Risposta:
La deviazione standard di
Spiegazione:
Sviluppiamo una formula generale, quindi come particolare si ottiene la deviazione standard di
Nota che
# "Var" (X) = 1 / n sum_ {i = 1} ^ n x_i ^ 2 - (1 / n somma _ (i = 1) ^ n x_i) ^ 2 #
#implies "Var" (X) = 1 / n sum_ {i = 1} ^ n i ^ 2 - (1 / n somma _ (i = 1) ^ n i) ^ 2 #
#implies "Var" (X) = 1 / n * (n (n + 1) (2n + 1)) / (6) - (1 / n * (n (n + 1)) / 2) ^ 2 #
#implies "Var" (X) = ((n + 1) (2n + 1)) / (6) - ((n + 1) / 2) ^ 2 #
#implies "Var" (X) = (n + 1) / (2) (2n + 1) / 3- (n + 1) / 2 #
#implies "Var" (X) = (n + 1) / (2) * (n-1) / 6 #
#implies "Var" (X) = (n ^ 2-1) / (12) # Quindi, deviazione standard di
# {1, 2,3, …., n} # è# "Var" (X) ^ (1/2) = (n ^ 2-1) / (12) ^ (1/2) #
In particolare, il tuo caso la deviazione standard di
I seguenti dati mostrano il numero di ore di sonno raggiunto durante una notte recente per un campione di 20 lavoratori: 6,5,10,5,6,9,9,5,9,5,8,7,8,6, 9,8,9,6,10,8. Qual è il significato? Qual è la varianza? Qual è la deviazione standard?
Media = 7.4 Deviazione standard ~~ 1.715 Varianza = 2.94 La media è la somma di tutti i punti dati divisi per il numero di punti dati. In questo caso, abbiamo (5 + 5 + 5 + 5 + 6 + 6 + 6 + 6 + 7 + 8 + 8 + 8 + 8 + 9 + 9 + 9 + 9 + 9 + 10 + 10) / 20 = 148/20 = 7.4 La varianza è "la media delle distanze al quadrato dalla media". http://www.mathsisfun.com/data/standard-deviation.html Ciò significa che devi sottrarre tutti i punti dati dalla media, quadrare le risposte, quindi sommarle tutte e dividerle per il numero di punti dati. In questa domanda, appare come segue: 4 (5-7.4) = 4 (-2.4) ^ 2 = 4 (5.76)
Un campione di 64 osservazioni è selezionato da una popolazione normale. La media campionaria è 215 e la deviazione standard della popolazione è 15. Eseguire il seguente test di ipotesi usando il livello di significatività 0,03. Qual è il valore p?
0.0038
Supponiamo che una classe di studenti abbia un punteggio di matematica SAT medio di 720 e un punteggio verbale medio di 640. La deviazione standard per ogni parte è 100. Se possibile, trovare la deviazione standard del punteggio composito. Se non è possibile, spiega perché.?
141 Se X = il punteggio matematico e Y = il punteggio verbale, E (X) = 720 e SD (X) = 100 E (Y) = 640 e SD (Y) = 100 Non è possibile aggiungere queste deviazioni standard per trovare lo standard deviazione per il punteggio composito; tuttavia, possiamo aggiungere varianze. La varianza è il quadrato della deviazione standard. var (X + Y) = var (X) + var (Y) = SD ^ 2 (X) + SD ^ 2 (Y) = 100 ^ 2 + 100 ^ 2 = 20000 var (X + Y) = 20000, ma dal momento che vogliamo la deviazione standard, prendiamo semplicemente la radice quadrata di questo numero. SD (X + Y) = sqrt (var (X + Y)) = sqrt20000 ~~ 141 Pertanto, la deviazion