Risposta:
Spiegazione:
Trovo che sia molto utile risolvere il dominio su cui esiste la funzione.
In questo caso
Su questo dominio, il valore minimo che la funzione può assumere è zero e il valore massimo che può assumere è
Quindi, l'intervallo della funzione è
Spero che questo ti aiuti:)
Lascia che il dominio di f (x) sia [-2.3] e l'intervallo sia [0,6]. Qual è il dominio e l'intervallo di f (-x)?
Il dominio è l'intervallo [-3, 2]. L'intervallo è l'intervallo [0, 6]. Esattamente com'è, questa non è una funzione, poiché il suo dominio è solo il numero -2.3, mentre il suo intervallo è un intervallo. Ma supponendo che questo sia solo un errore di battitura e che il dominio effettivo sia l'intervallo [-2, 3], questo è il seguente: Sia g (x) = f (-x). Poiché f richiede che la sua variabile indipendente prenda valori solo nell'intervallo [-2, 3], -x (negativo x) deve essere compreso tra [-3, 2], che è il dominio di g. Poiché g ottiene il suo va
Che cosa è (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5) sqrt (3)) / (sqrt (3+) sqrt (3) sqrt (5))?
2/7 Prendiamo, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (cancel (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - cancel (2sqrt15) -5 + 2 * 3 + cancel (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Si noti che, se nei denominatori sono (sqrt3 + sqrt (3 + sqrt5))
Qual è il dominio e l'intervallo di 3x-2 / 5x + 1 e il dominio e l'intervallo di inverso della funzione?
Il dominio è tutto reale eccetto -1/5, che è l'intervallo dell'inverso. L'intervallo è tutto reale tranne 3/5 che è il dominio dell'inverso. f (x) = (3x-2) / (5x + 1) è definito e valori reali per tutti x tranne -1/5, quindi questo è il dominio di f e l'intervallo di f ^ -1 Impostazione y = (3x -2) / (5x + 1) e risolvendo x i rendimenti 5xy + y = 3x-2, quindi 5xy-3x = -y-2, e quindi (5y-3) x = -y-2, quindi, infine x = (- y-2) / (5y-3). Vediamo che y! = 3/5. Quindi l'intervallo di f è tutto reale eccetto 3/5. Questo è anche il dominio di f ^ -1.