Qual è il vertice e la messa a fuoco della parabola descritta da 2x ^ 2-5x + y + 50 = 0?

Qual è il vertice e la messa a fuoco della parabola descritta da 2x ^ 2-5x + y + 50 = 0?
Anonim

Risposta:

Il vertice è # V = (5/4, -375/8) #

L'attenzione è # F = (5/4, -376/8) #

La direttrice è # Y = -374/8 #

Spiegazione:

Riscriviamo questa equazione e completiamo i quadrati

# 2x ^ 2-5x + y + 50 = 0 #

# 2x ^ 2-5x = -y-50 #

# 2 (x ^ 2-5 / 2x) = - (y + 50) #

# (X ^ 2-5 / 2x + 25/16) = - 1/2 (y + 50) #

# (X-5/4) ^ 2 = -1 / 2 (y + 50-25 / 8) #

# (X-5/4) ^ 2 = -1 / 2 (y +425 / 8) #

Confrontiamo questa equazione con

# (X-a) ^ 2 = 2p (y-b) #

Il vertice è # V = (a, b) = (5/4, -375/8) #

# P = -1/4 #

L'attenzione è # F = (5/4, b + p / 2) = (5/4, -376/8) #

La direttrice è # Y = b-p / 2 = -375 / 8 + 1/8 = -374 / 8 #

grafico {(2x ^ 2-5x + y + 50) (y + 374/8) ((x-5/4) ^ 2 + (y + 375/8) ^ 2-0.001) = 0 -1.04, 7.734, -48.52, -44.13}