Risposta:
Spiegazione:
# "L'uso del divisore come fattore nel numeratore dà" #
# "considera il numeratore" #
#color (rosso) (y) (y-2) di colore (magenta) (+ 2y) -2y + 2 #
# = Colore (rosso) (y) (y-2) + 2 #
# "quoziente" = colore (rosso) (y), "resto" = + 2 #
#rArr (y ^ 2-2y + 2) / (y-2) = y + 2 / (y-2) #
Il resto di un polinomio f (x) in x è rispettivamente 10 e 15 quando f (x) è diviso per (x-3) e (x-4). Per il resto quando f (x) è diviso per (x- 3) (- 4)?
5x-5 = 5 (x-1). Ricorda che il grado del resto poly. è sempre inferiore a quella del divisore poli. Pertanto, quando f (x) è diviso per un poli quadratico. (x-4) (x-3), il resto poly. deve essere lineare, per esempio (ax + b). Se q (x) è il quoziente poli. nella divisione sopra, quindi, abbiamo, f (x) = (x-4) (x-3) q (x) + (ax + b) ............ <1> . f (x), quando diviso per (x-3) lascia il resto 10, rArr f (3) = 10 .................... [perché, "il Teorema del resto] ". Quindi, per <1>, 10 = 3a + b .................................... <2 >. Allo stesso modo, f (4) = 15 e <
Vero o falso ? Se 2 divide gcf (a, b) e 2 divide gcf (b, c) allora 2 divide gcf (a, c)
Vedi sotto. GCF di due numeri, ad esempio xey (in realtà anche di più) è un fattore comune, che divide tutti i numeri. Lo scriviamo come gcf (x, y). Tuttavia, si noti che GCF è il più grande fattore comune e ogni fattore di questi numeri, è anche un fattore di GCF. Si noti inoltre che se z è un fattore di yey è un fattore di x, allora anche z è un fattore o x. Ora come 2 divide gcf (a, b), significa, 2 divide a e b anche e quindi a e b sono pari. Allo stesso modo, come 2 divide gcf (b, c), significa, 2 divide anche b e c e quindi b e c sono pari. Quindi come aec entrambi sono pa
Quando un polinomio è diviso per (x + 2), il resto è -19. Quando lo stesso polinomio è diviso per (x-1), il resto è 2, come si determina il resto quando il polinomio è diviso per (x + 2) (x-1)?
Sappiamo che f (1) = 2 e f (-2) = - 19 dal Teorema dei rimanenti ora troviamo il resto del polinomio f (x) quando diviso per (x-1) (x + 2) Il resto sarà di la forma Ax + B, perché è il resto dopo la divisione di un quadratico. Ora possiamo moltiplicare il divisore per il quoziente Q ... f (x) = Q (x-1) (x + 2) + Ax + B Successivo, inserisci 1 e -2 per x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Risolvendo queste due equazioni, otteniamo A = 7 e B = -5 Remainder = Ax + B = 7x-5