Risposta:
Lunghezza
Spiegazione:
La zona
Lunghezza
# L = 2b + 3 # sostituendo
# L = 2b + 3 # in equazione (1)
# (2b + 3) XXB = 27 #
# 2b ^ 2 + 3 ter = 27 #
# 2b ^ 2 + 3b-27 = 0 #
# 2b ^ 2 + 9b-6b-27 = 0 #
# 2 ter (b + 9) -3 (2b + 9) = 0 #
# (2b-3) (b + 9) = 0 #
#.2b-3 = 0 #
# 2b = 3 #
# B = 3/2 #
# B + 9 = 0 #
# B = -9 #
la larghezza non può essere negativa. Quindi
Larghezza
Quindi Lenth
# L = 2b + 3 #
# L = (2xx3 / 2) + 3 #
# L = 6/2 + 3 = 3 + 3 = 6 #
La lunghezza di un rettangolo è di 4 pollici in più della sua larghezza. Se 2 pollici sono presi dalla lunghezza e aggiunti alla larghezza e la figura diventa un quadrato con un'area di 361 pollici quadrati. Quali sono le dimensioni della figura originale?
Ho trovato una lunghezza di 25 "in" e una larghezza di 21 "in". Ho provato questo:
La larghezza e la lunghezza di un rettangolo sono numeri interi consecutivi. Se la larghezza è diminuita di 3 pollici. quindi l'area del rettangolo risultante è di 24 pollici quadrati Qual è l'area del rettangolo originale?
48 "pollici quadrati" "lascia che la larghezza" = n "allora lunghezza" = n + 2 n "e" n + 2 colore (blu) "siano numeri interi consecutivi" "la larghezza è diminuita di" 3 "pollici" rArr "larghezza "= n-3" area "=" lunghezza "xx" larghezza "rArr (n + 2) (n-3) = 24 rArrn ^ 2-n-6 = 24 rArrn ^ 2-n-30 = 0larrcolor (blu) "in forma standard" "i fattori di - 30 che sommano a - 1 sono + 5 e - 6" rArr (n-6) (n + 5) = 0 "equivalgono a ciascun fattore a zero e risolvono per n" n-6 = 0rArrn = 6
La larghezza di un rettangolo è 3 pollici inferiore alla sua lunghezza. L'area del rettangolo è di 340 pollici quadrati. Quali sono la lunghezza e la larghezza del rettangolo?
Lunghezza e larghezza sono rispettivamente 20 e 17 pollici. Prima di tutto, consideriamo x la lunghezza del rettangolo e la sua larghezza. Secondo l'affermazione iniziale: y = x-3 Ora sappiamo che l'area del rettangolo è data da: A = x cdot y = x cdot (x-3) = x ^ 2-3x ed è uguale a: A = x ^ 2-3x = 340 Quindi otteniamo l'equazione quadratica: x ^ 2-3x-340 = 0 Risolviamolo: x = {-b pm sqrt {b ^ 2-4ac}} / {2a} dove a, b, c provengono da ax ^ 2 + bx + c = 0. Sostituendo: x = {- (- 3) pm sqrt {(- 3) ^ 2-4 cdot 1 cdot (-340)}} / {2 cdot 1} = = {3 pm sqrt {1369}} / {2 } = {3 pm 37} / 2 Otteniamo due soluzion