Qual è l'intervallo della funzione f (x) = (5x-3) / (2x + 1)?

Qual è l'intervallo della funzione f (x) = (5x-3) / (2x + 1)?
Anonim

Risposta:

La gamma è #y in RR- {5/2} #

Spiegazione:

#f (x) = (5x-3) / (2x + 1) #

Permettere

# Y = (5x-3) / (2x + 1) #

#y (2x + 1) = 5x-3 #

# 2yx + y = 5x-3 #

# 5x-2yx = y + 3 #

#x (5-2y) = (y + 3) #

# X = (y + 3) / (5-2y) #

Il dominio di # X = f (y) # è #y in RR- {5/2} #

Questo è anche # F ^ -1 (x) = (x + 3) / (5-2x) #

grafico {(5x-3) / (2x + 1) -22,8, 22,83, -11,4, 11,4}

Risposta:

#y inRR, y! = 5/2 #

Spiegazione:

# "dato" y = (5x-3) / (2x + 1) #

# "riorganizza rendendo x l'oggetto" #

#rArry (2x + 1) = 5x-3larrcolor (blu) "cross-moltiplicazione" #

# rArr2xy + y = 5x-3larrcolor (blu) "distribuzione" #

# rArr2xy-5x = -3-ylarrcolor (blu) "raccoglie termini in x" #

#rArrx (2y-5) = - (3 + y) larrcolor (blu) "factor out x" #

#rArrx = - (3 + y) / (2y-5) #

# "il denominatore non può essere uguale a zero in quanto questo sarebbe" #

# "non definito" #

# 2y-5 = 0rArry = 5 / 2larrcolor (rosso) "valore escluso" #

# "range is" y inRR, y! = 5/2 #