Risposta:
Spiegazione:
Bene, il perimetro è semplicemente la somma dei lati per qualsiasi forma 2D.
Abbiamo tre lati nel nostro triangolo: da
Le lunghezze di ciascuno sono trovate dal teorema di Pitagora, usando la differenza tra il
Per la prima:
Per il secondo:
E per l'ultimo:
quindi il perimetro sarà
o in forma surd,
Il rapporto tra un lato del triangolo ABC e il lato corrispondente del triangolo simile DEF è 3: 5. Se il perimetro del triangolo DEF è di 48 pollici, qual è il perimetro del triangolo ABC?
"Perimetro di" triangolo ABC = 28.8 Dal triangolo ABC ~ triangolo DEF poi se ("lato di" ABC) / ("lato corrispondente di" DEF) = 3/5 colore (bianco) ("XXX") rArr ("perimetro di "ABC) / (" perimetro di "DEF) = 3/5 e poiché" perimetro di "DEF = 48 abbiamo colore (bianco) (" XXX ") (" perimetro di "ABC) / 48 = 3/5 rArrcolor ( bianco) ("XXX") "perimetro di" ABC = (3xx48) /5=144/5=28.8
Due angoli di un triangolo hanno angoli di (2 pi) / 3 e (pi) / 4. Se un lato del triangolo ha una lunghezza di 12, qual è il perimetro più lungo possibile del triangolo?
Il perimetro più lungo possibile è 12 + 40.155 + 32.786 = 84.941. Poiché due angoli sono (2pi) / 3 e pi / 4, il terzo angolo è pi-pi / 8-pi / 6 = (12pi-8pi-3pi) / 24- = pi / 12. Per il lato perimetrale più lungo della lunghezza 12, dire a, deve essere opposto all'angolo più piccolo pi / 12 e quindi usare la formula seno altri due lati sarà 12 / (sin (pi / 12)) = b / (sin ((2pi) / 3)) = c / (sin (pi / 4)) Quindi b = (12sin ((2pi) / 3)) / (sin (pi / 12)) = (12xx0.866) /0.2588=40.155 ec = ( 12xxsin (pi / 4)) / (sin (pi / 12)) = (12xx0.7071) /0.2588=32.786 Quindi il perimetro più lun
Due angoli di un triangolo hanno angoli di (2 pi) / 3 e (pi) / 4. Se un lato del triangolo ha una lunghezza di 4, qual è il perimetro più lungo possibile del triangolo?
P_max = 28.31 unità Il problema ti dà due dei tre angoli in un triangolo arbitrario. Poiché la somma degli angoli di un triangolo deve sommarsi a 180 gradi, o pi radianti, possiamo trovare il terzo angolo: (2pi) / 3 + pi / 4 + x = pi x = pi- (2pi) / 3- pi / 4 x = (12pi) / 12- (8pi) / 12- (3pi) / 12 x = pi / 12 Disegniamo il triangolo: il problema afferma che uno dei lati del triangolo ha una lunghezza di 4, ma non specifica da che parte. Tuttavia, in ogni triangolo dato, è vero che il lato più piccolo sarà opposto rispetto all'angolo più piccolo. Se vogliamo massimizzare il perimetro,