Risposta:
Spiegazione:
La lunghezza, la larghezza e la diagonale del rettangolo formano un triangolo rettangolo, con la diagonale come l'ipotenusa, quindi il Teorema di Pitagora è valido per calcolare la lunghezza della diagonale.
Nota che non consideriamo il valore radice quadrata negativo poiché la diagonale è una lunghezza, quindi non può essere negativa.
La diagonale di un rettangolo è di 13 pollici. La lunghezza del rettangolo è 7 pollici più lunga della sua larghezza. Come trovi la lunghezza e la larghezza del rettangolo?
Chiamiamo la larghezza x. Quindi la lunghezza è x + 7 La diagonale è l'ipotenusa di un triangolo rettangolare. Quindi: d ^ 2 = l ^ 2 + w ^ 2 o (riempiendo ciò che sappiamo) 13 ^ 2 = 169 = (x + 7) ^ 2 + x ^ 2 = x ^ 2 + 14x + 49 + x ^ 2 -> 2x ^ 2 + 14x-120 = 0-> x ^ 2 + 7x-60 = 0 Una semplice equazione quadratica che si risolve in: (x + 12) (x-5) = 0-> x = -12orx = 5 Solo la soluzione positiva è utilizzabile così: w = 5 e l = 12 Extra: Il triangolo (5,12,13) è il secondo più semplice triangolo pitagorico (dove tutti i lati sono numeri interi). Il più semplice è (3,4,
La lunghezza di un rettangolo è di 3,5 pollici in più della sua larghezza. Il perimetro del rettangolo è 31 pollici. Come trovi la lunghezza e la larghezza del rettangolo?
Lunghezza = 9.5 ", Larghezza = 6" Iniziare con l'equazione perimetrale: P = 2l + 2w. Quindi inserisci le informazioni che conosciamo. Il perimetro è 31 "e la lunghezza è uguale alla larghezza + 3,5". Quindi: 31 = 2 (w + 3,5) + 2w perché l = w + 3,5. Quindi risolviamo per w dividendo tutto per 2. Siamo quindi rimasti con 15,5 = w + 3,5 + w. Quindi sottrarre 3.5 e combinare le w per ottenere: 12 = 2w. Finalmente dividi per 2 di nuovo per trovare w e otteniamo 6 = w. Questo ci dice che la larghezza è pari a 6 pollici, metà del problema. Per trovare la lunghezza, inseriamo sempl
Originariamente un rettangolo era il doppio della larghezza. Quando 4 m sono stati aggiunti alla sua lunghezza e 3 m sottratti dalla sua larghezza, il rettangolo risultante aveva un'area di 600 m ^ 2. Come trovi le dimensioni del nuovo rettangolo?
Larghezza originale = 18 metri Lunghezza originale = 36 metri Il trucco con questo tipo di domanda è di fare uno schizzo veloce. In questo modo puoi vedere cosa sta succedendo e trovare un metodo di soluzione. Noto: area "larghezza" xx "lunghezza" => 600 = (w-3) (2w + 4) => 600 = 2w ^ 2 + 4w-6w-12 Sottrai 600 da entrambi i lati => 2w ^ 2-2w -612 = 0 => (2w-36) (w + 17) = 0 => w = -17 Non è logico che una lunghezza sia negativa in questo contesto, quindi w! = - 17 w = 18 => L = 2xx18 = 36 '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Controllo (36 + 4) (18-3) = 40xx15 = 600 m ^ 2