Risposta:
Vedi una soluzione qui sotto:
Spiegazione:
La forma di intercettazione di un'equazione lineare è:
Dove
La sostituzione dà:
L'equazione della linea QR è y = - 1/2 x + 1. Come si scrive un'equazione di una linea perpendicolare alla linea QR nella forma di intercettazione del pendio che contiene il punto (5, 6)?
Vedere una procedura di soluzione di seguito: in primo luogo, abbiamo bisogno di trovare la pendenza del per i due punti del problema. La linea QR è in forma di intercettazione di pendenza. La forma di intercettazione di un'equazione lineare è: y = colore (rosso) (m) x + colore (blu) (b) Dove colore (rosso) (m) è la pendenza e colore (blu) (b) è il valore dell'intercetta y. y = colore (rosso) (- 1/2) x + colore (blu) (1) Quindi la pendenza del QR è: colore (rosso) (m = -1/2) Quindi, chiamiamo la pendenza per la linea perpendicolare a questo m_p La regola delle pendenze perpendicolari è
Il PERIMETRO di isoscele trapezoidali ABCD è pari a 80 cm. La lunghezza della linea AB è 4 volte più grande della lunghezza di una linea CD che è 2/5 la lunghezza della linea BC (o le linee che sono uguali in lunghezza). Qual è l'area del trapezio?
L'area del trapezio è 320 cm ^ 2. Lascia che il trapezio sia come mostrato di seguito: Qui, se assumiamo il lato più piccolo CD = ae il lato più grande AB = 4a e BC = a / (2/5) = (5a) / 2. Come tale BC = AD = (5a) / 2, CD = a e AB = 4a Quindi il perimetro è (5a) / 2xx2 + a + 4a = 10a Ma il perimetro è 80 cm. Quindi a = 8 cm. e due lati di paillel indicati con aeb sono di 8 cm. e 32 cm. Ora, disegniamo perpendicolari da C e D a AB, che forma due trianges angolati a destra identici, la cui ipotenusa è 5 / 2xx8 = 20 cm. e base è (4xx8-8) / 2 = 12 e quindi la sua altezza è sqrt (20 ^
Qual è l'equazione in forma di pendenza del punto e forma di intercettazione della pendenza della linea data pendenza 3/5 che passa attraverso il punto (10, -2)?
Forma pendenza del punto: y-y_1 = m (x-x_1) m = pendenza e (x_1, y_1) è la forma di intercettazione del punto: y = mx + c 1) y - (- 2) = 3/5 ( x-10) => y + 2 = 3/5 (x) -6 5y-3x-40 = 0 2) y = mx + c -2 = 3/5 (10) + c => - 2 = 6 + c => c = -8 (che può essere osservato anche dall'equazione precedente) y = 3/5 (x) -8 => 5y-3x-40 = 0