Risposta:
Spiegazione:
Dopo 4 anni, la macchina vale la pena
Lavorare all'indietro
Originale:
al più vicino
-Pesce
Scrivi un'equazione per soddisfare il problema della parola:
Risolvere:
Il prezzo era approssimativamente
Il prossimo modello di un'auto sportiva avrà un costo del 13,8% in più rispetto al modello attuale. Il modello attuale costa $ 53.000. Quanto aumenterà il prezzo in dollari? Quale sarà il prezzo del prossimo modello?
$ 60314> $ 53000 "rappresenta" 100% "il costo originale" 100 + 13,8 = 113,8% = 113,8 / 100 = 1,113 "moltiplicando per 1,113 fornisce il costo dopo l'aumento" "prezzo" = 53000xx1,138 = $ 60314
Lauren ha 1 anno in più del doppio di Joshua. Tra 3 anni, Jared avrà 27 anni in meno di Lauren. 4 anni fa, Jared aveva 1 anno in meno di 3 volte l'età di Joshua. Quanti anni avrà Jared tra 3 anni?
L'età attuale di Lauren, Joshua e Jared è di 27,13 e 30 anni. Dopo 3 anni Jared avrà 33 anni. Che l'età attuale di Lauren, Joshua e Jared siano x, y, z anni Per condizione data, x = 2 y + 1; (1) Dopo 3 anni z + 3 = 2 (x + 3) -27 o z + 3 = 2 (2 y + 1 + 3) -27 o z = 4 y + 8-27-3 o z = 4 y -22; (2) 4 anni fa z - 4 = 3 (y-4) -1 o z-4 = 3 y -12 -1 o z = 3 y -13 + 4 o z = 3 y -9; (3) Da equazioni (2) e (3) otteniamo 4 y-22 = 3 y -9 o y = 13:. x = 2 * 13 + 1 = 27 z = 4 y -22 = 4 * 13-22 = 30 Pertanto l'età attuale di Lauren, Joshua e Jared sono 27,13 e 30 anni Dopo 3 anni Jared avrà 33 an
Una macchina si deprezza al ritmo del 20% all'anno. Quindi, alla fine dell'anno, l'auto vale l'80% del suo valore dall'inizio dell'anno. Quale percentuale del suo valore originale è l'auto che vale alla fine del terzo anno?
51,2% Modelliamo questo con una funzione esponenziale decrescente. f (x) = y volte (0.8) ^ x Dove y è il valore iniziale della vettura e x è il tempo trascorso in anni dall'anno di acquisto. Quindi dopo 3 anni abbiamo il seguente: f (3) = y volte (0.8) ^ 3 f (3) = 0.512y Quindi l'auto vale solo il 51.2% del suo valore originale dopo 3 anni.