Risposta:
Spiegazione:
ID Trig utili
Definizioni di funzioni
Formula di somma di angoli
Che dà la doppia formula del doppio angolo ben noto
Iniziamo con il nostro ID, sotto nella definizione di base e usiamo alcune regole di frazione per ottenere quanto segue.
Sostituiamo
L'annullamento del coseno
lasciandoci con
I termini 2, 6 e 8 di una progressione aritmetica sono tre termini successivi di un Geometric.P. Come trovare il rapporto comune di G.P e ottenere un'espressione per l'ennesimo periodo del G.P?
Il mio metodo lo risolve! Total rewrite r = 1/2 "" => "" a_n = a_1 (1/2) ^ (n-1) Per fare la differenza tra le due sequenze, sto usando la seguente notazione: a_2 = a_1 + d "" -> "" tr ^ 0 "" ............... Eqn (1) a_6 = a_1 + 5d "" -> "" tr "" ........ ........ Eqn (2) a_8 = a_1 + 7d "" -> "" tr ^ 2 "" ............... Eqn (3) ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Eqn (2) -Eqn (1) a_1 + 5d = tr ul (a_1 + colore (bianco) (5) d = t larr "Sottrai" "" 4d = tr-t -> t (r-1) &quo
Quando il polinomio ha quattro termini e non è possibile trarre un fattore da tutti i termini, riorganizzare il polinomio in modo da poter calcolare due termini alla volta. Quindi scrivi i due binomiali con cui finisci. (4ab + 8b) - (3a + 6)?
(a + 2) (4b-3) "il primo passo è rimuovere le parentesi" rArr (4ab + 8b) colore (rosso) (- 1) (3a + 6) = 4ab + 8b-3a-6 "ora fattore i termini "raggruppandoli" "color (rosso) (4b) (a + 2) color (rosso) (- 3) (a + 2)" take out "(a + 2)" come fattore comune di ciascun gruppo "= (a + 2) (colore (rosso) (4b-3)) rArr (4ab + 8b) - (3a + 6) = (a + 2) (4b-3) colore (blu)" Come assegno " (a + 2) (4b-3) larr "espandi utilizzando FOIL" = 4ab-3a + 8b-6larr "confronta con l'espansione sopra"
Quando il polinomio ha quattro termini e non è possibile trarre un fattore da tutti i termini, riorganizzare il polinomio in modo da poter calcolare due termini alla volta. Quindi scrivi i due binomiali che ottieni. (6y ^ 2-4y) + (3y-2)?
(3y-2) (2y + 1) Iniziamo con l'espressione: (6y ^ 2-4y) + (3y-2) Nota che posso calcolare 2y dal termine sinistro e che lascerà un 3y-2 all'interno del bracket: 2y (3y-2) + (3y-2) Ricorda che posso moltiplicare qualsiasi cosa per 1 e ottenere la stessa cosa. E quindi posso dire che c'è un 1 davanti al termine giusto: 2y (3y-2) +1 (3y-2) Quello che posso fare ora è il fattore 3y-2 dai termini di destra e di sinistra: (3y -2) (2y + 1) E ora l'espressione è fattorizzata!