Qual è la discriminante di x ^ 2-4 = 0 e cosa significa?

Qual è la discriminante di x ^ 2-4 = 0 e cosa significa?
Anonim

Risposta:

Il discriminante è 8. Ti dice che ci sono due radici reali separate all'equazione.

Spiegazione:

Se hai un'equazione quadratica del modulo

# Ax ^ 2 + bx + c = 0 #

La soluzione è

#x = (-b ± sqrt (b ^ 2-4ac)) / (2a) #

Il discriminante #Δ# è # b ^ 2 -4ac #.

Il discriminante "discrimina" la natura delle radici.

Ci sono tre possibilità.

  • Se #Δ > 0#, ci sono due separati vere radici.
  • Se #Δ = 0#, ci sono due identici vere radici.
  • Se #Δ <0#, ci sono no vere radici, ma ci sono due radici complesse.

La tua equazione è

# x ^ 2 - 2 = 0 #

# Δ = b ^ 2 - 4ac = (0) ^ 2 -4 × 1 × (-2) = 0 +8 = 8 #

Questo ti dice che ci sono due radici reali separate.

Possiamo vedere questo se risolviamo l'equazione.

# x ^ 2 -2 = 0 #

#x = (-b ± sqrt (b ^ 2-4ac)) / (2a) = (-0 ± sqrt ((0) ^ 2 -4 × 1 × (-2))) / (2 × 1) = ± sqrt (0 + 8) / 2 = ± sqrt8 / 2 = ± (2sqrt2) / 2 = ± sqrt2 ##

#x = sqrt2 # e #x = -sqrt2 #

Ci sono due radici reali separate all'equazione.