Risposta:
B.
Spiegazione:
Ci è stato dato
Ora possiamo prendere la radice quadrata di entrambi i lati, assicurandoci di aggiungere un
Quindi, le nostre soluzioni sono
Supponiamo che tu lavori in un laboratorio e che tu abbia bisogno di una soluzione di acido al 15% per condurre un determinato test, ma il tuo fornitore spedisce solo una soluzione al 10% e una soluzione al 30%. Hai bisogno di 10 litri di soluzione acida al 15%?
Scopriamolo dicendo che la quantità di soluzione al 10% è x Quindi la soluzione al 30% sarà 10-x La soluzione desiderata al 15% contiene 0,15 * 10 = 1,5 di acido. La soluzione al 10% fornirà 0,10 * x E la soluzione al 30% fornirà 0.30 * (10-x) Quindi: 0.10x + 0.30 (10-x) = 1.5-> 0.10x + 3-0.30x = 1.5-> 3 -0.20x = 1.5-> 1.5 = 0.20x-> x = 7.5 Avrete bisogno di 7,5 L della soluzione al 10% e 2,5 L del 30%. Nota: puoi farlo in un altro modo. Tra il 10% e il 30% è una differenza di 20. È necessario salire dal 10% al 15%. Questa è una differenza di 5. Quindi il tuo mix dovrebbe
La somma delle cifre di un numero a due cifre è 14. La differenza tra la cifra delle decine e la cifra delle unità è 2. Se x è la cifra delle decine e y è la cifra, quale sistema di equazioni rappresenta la parola problema?
X + y = 14 xy = 2 e (possibilmente) "Number" = 10x + y Se xey sono due cifre e ci viene detto che la loro somma è 14: x + y = 14 Se la differenza tra la cifra delle decine x e la unità cifra y è 2: xy = 2 Se x è la cifra delle decine di un "Numero" e y è la sua cifra di unità: "Numero" = 10x + y
Per condurre un esperimento scientifico, gli studenti devono mescolare 90 ml di una soluzione acida al 3%. Hanno una soluzione disponibile all'1% e al 10%. Quanti ml della soluzione all'1% e della soluzione al 10% dovrebbero essere combinati per produrre 90 ml della soluzione al 3%?
Puoi farlo con i rapporti. La differenza tra l'1% e il 10% è 9. Devi salire dall'1% al 3% - una differenza di 2. Quindi devono essere presenti 2/9 delle cose più forti, o in questo caso 20mL (e di corso 70 ml di roba più debole).