Risposta:
Vedi sotto
Spiegazione:
La prova coordinata è una prova algebrica di un teorema geometrico. In altre parole, usiamo numeri (coordinate) invece di punti e linee.
In alcuni casi provare un teorema algebricamente, usando le coordinate, è più facile che trovare prove logiche usando i teoremi della geometria.
Ad esempio, proviamo a usare il metodo di coordinate del teorema della linea mediana che afferma:
I punti medi dei lati di qualsiasi quadrilatero formano un parallelogramma.
Lascia quattro punti
Punto medio
Punto medio
Punto medio
Punto medio
Dimostramelo
Come vediamo, le pendici di
Analogamente, pendii di
Quindi, abbiamo dimostrato che i lati opposti del quadrilatero
Il vettore di posizione di A ha le coordinate cartesiane (20,30,50). Il vettore posizione di B ha le coordinate cartesiane (10,40,90). Quali sono le coordinate del vettore posizione di A + B?
<30, 70, 140> When adding vectors, simply add the coordinates. A+B=<20, 30, 50> + <10, 40, 90> =<20+10, 30+40, 50+90> = <30, 70, 140>
Sia M un vettore matrice e u e v: M = [(a, b), (c, d)], v = [(x), (y)], u = [(w), (z)] . (a) Proporre una definizione per u + v. (b) Mostra che la tua definizione obbedisce a Mv + Mu = M (u + v)?
La definizione dell'aggiunta di vettori, la moltiplicazione di una matrice per un vettore e la prova della legge distributiva sono sotto. Per due vettori v = [(x), (y)] e u = [(w), (z)] definiamo un'operazione di addizione come u + v = [(x + w), (y + z)] Moltiplicazione di una matrice M = [(a, b), (c, d)] per vettore v = [(x), (y)] è definita come M * v = [(a, b), (c, d )] * [(x), (y)] = [(ax + by), (cx + dy)] Analogamente, moltiplicazione di una matrice M = [(a, b), (c, d)] per vettore u = [(w), (z)] è definito come M * u = [(a, b), (c, d)] * [(w), (z)] = [(aw + bz), (cw + dz)] Controlliamo la legge dis
P è il punto medio del segmento di linea AB. Le coordinate di P sono (5, -6). Le coordinate di A sono (-1,10).Come trovi le coordinate di B?
B = (x_2, y_2) = (11, -22) Se è noto un punto finale (x_1, y_1) e il punto medio (a, b) di un segmento di linea, allora possiamo usare la formula del punto medio per trova il secondo end-point (x_2, y_2). Come utilizzare la formula del punto medio per trovare un endpoint? (x_2, y_2) = (2a-x_1, 2b-y_1) Qui, (x_1, y_1) = (- 1, 10) e (a, b) = (5, -6) Quindi, (x_2, y_2) = (2colore (rosso) ((5)) -colore (rosso) ((-1)), 2colore (rosso) ((- 6)) - colore (rosso) 10) (x_2, y_2) = (10 + 1, -12-10) (x_2, y_2) = (11, -22) #