Risposta:
Vedi l'intera procedura di soluzione di seguito:
Spiegazione:
Il teorema di Pitagora afferma:
Supponendo che le lunghezze dei lati dati nel problema siano per un triangolo rettangolo per il quale risolvi
La lunghezza del lato mancante o ipotenusa è:
Usando il teorema di Pitagora, come risolvi il lato mancante dato a = 10 eb = 20?
Vedere un processo di soluzione di seguito: Il teorema di Pitagora afferma, per un triangolo rettangolo: c ^ 2 = a ^ 2 + b ^ 2 Sostituendo per a e b e risolvendo per c dà: c ^ 2 = 10 ^ 2 + 20 ^ 2 c ^ 2 = 100 + 400 c ^ 2 = 500 sqrt (c ^ 2) = sqrt (500) c = sqrt (100 * 5) c = sqrt (100) sqrt (5) c = 10sqrt (5)
Usando il teorema di Pitagora, come risolvi il lato mancante dato a = 15 eb = 16?
C = sqrt {481} Secondo il Teorema di Pitagora: a ^ {2} + b ^ {2} = c ^ {2} (aeb rappresentano le gambe di un triangolo rettangolo e c rappresenta l'ipotenusa) Quindi possiamo sostituire e semplifica: 15 ^ {2} + 16 ^ {2} = c ^ {2} 225 + 256 = c ^ {2} 481 = c ^ {2} Quindi prendi la radice quadrata di entrambi i lati: sqrt {481} = c
Usando il teorema di Pitagora, come risolvi il lato mancante dato a = 14 eb = 13?
C = sqrt (a ^ 2 + b ^ 2) = sqrt (14 ^ 2 + 13 ^ 2) = sqrt (365) ~ = 19.1 Il Teorema di Pitagora si applica ai triangoli ad angolo retto, dove i lati aeb sono quelli che si intersecano ad angolo retto. Il terzo lato, l'ipotenusa, è quindi c Nel nostro esempio sappiamo che a = 14 eb = 13 quindi possiamo usare l'equazione per risolvere per il lato sconosciuto c: c ^ 2 = a ^ 2 + b ^ 2 oc = sqrt (a ^ 2 + b ^ 2) = sqrt (14 ^ 2 + 13 ^ 2) = sqrt (365) ~ = 19,1