Risposta:
In forma di pendenza del punto:
Spiegazione:
Innanzitutto, dobbiamo trovare la pendenza della linea originale tra i due punti.
Collegando i valori corrispondenti si ottiene:
Poiché le pendenze delle linee perpendicolari sono reciprocamente negative l'una rispetto all'altra, la pendenza delle linee che stiamo cercando sarà il reciproco di
Ora dobbiamo trovare il punto medio di questi due punti, che ci darà le informazioni rimanenti per scrivere l'equazione della linea.
La formula del punto medio è:
Inserimento dei rendimenti:
Pertanto, la linea che stiamo cercando di trovare l'equazione passa attraverso quel punto.
Conoscendo la pendenza della linea e il punto in cui passa, possiamo scrivere la sua equazione in forma di pendenza del punto, indicata da:
Inserimento dei rendimenti:
Qual è l'equazione della linea che è perpendicolare alla linea che passa attraverso (-8,10) e (-5,12) al punto medio dei due punti?
Vedere una procedura di soluzione di seguito: in primo luogo, dobbiamo trovare il punto medio dei due punti nel problema. La formula per trovare il punto medio di un segmento di linea fornisce i due punti finali: M = ((colore (rosso) (x_1) + colore (blu) (x_2)) / 2, (colore (rosso) (y_1) + colore (blu) (y_2)) / 2) Dove M è il punto medio e i punti dati sono: (colore (rosso) (x_1), colore (rosso) (y_1)) e (colore (blu) (x_2), colore (blu) (y_2)) Sostituisce con: M = ((colore (rosso) (- 8) + colore (blu) (- 5)) / 2, (colore (rosso) (10) + colore (blu) ( 12)) / 2) M = (-13/2, 22/2) M = (-6.5, 11) Quindi, dobbiamo trovare
Qual è l'equazione della linea che è perpendicolare alla linea che passa attraverso (-5,3) e (4,9) al punto medio dei due punti?
Y = -1 1 / 2x + 2 1/4 La pendenza di una linea che è perpendicolare a una data linea sarebbe la pendenza inversa della linea data m = a / b la pendenza perpendicolare sarebbe m = -b / a La formula per la pendenza di una linea basata su due punti di coordinate è m = (y_2-y_1) / (x_2-x_1) Per i punti di coordinate (-5,3) e (4,9) x_1 = -5 x_2 = 4 y_1 = 3 y_2 = 9 m = (9-3) / (4 - (- 5)) m = 6/9 La pendenza è m = 6/9 la pendenza perpendicolare sarebbe la reciproca (-1 / m) m = -9 / 6 Per trovare il punto medio della linea, dobbiamo usare la formula del punto medio ((x_1 + x_2) / 2, (y_1 + y_2) / 2) ((-5 + 4) / 2,
Qual è l'equazione della linea che è perpendicolare alla linea che passa attraverso (5,12) e (-2, -23) al punto medio dei due punti?
X + 5y = -26 Abbiamo bisogno del reciproco negativo della pendenza m e del punto medio M (x_m, y_m) m = (y_2-y_1) / (x_2-x_1) = (- 23-12) / (- 2-5 ) = (- 35) / (- 7) = 5 Il punto medio: x_m = (5 + (- 2)) / 2 = 3/2 y_m = (12 + (- 23)) / 2 = (- 11) / 2 L'equazione (y-y_m) = (- 1 / m) (x-x_m) (y - (- 11) / 2) = (- 1/5) (x-3/2) 5 (y + 11 / 2) = - x + 3/2 5 (2y + 11) = - 2x + 3 10y + 55 = -2x + 3 2x + 10y = -52 x + 5y = -26 Dio benedica .... Spero che la spiegazione è utile.