Risposta:
Spiegazione:
La derivata del quoziente è definita come segue:
Permettere
Sapendo che
Cerchiamo di trovare
Mostra che cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Sono un po 'confuso se creo Cos²4π / 10 = cos² (π-6π / 10) e cos²9π / 10 = cos² (π-π / 10), diventerà negativo come cos (180 ° -theta) = - costheta in il secondo quadrante. Come faccio a dimostrare la domanda?
Vedi sotto. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Come trovi la derivata di cos ((1-e ^ (2x)) / (1 + e ^ (2x)))?
F '(x) = (4e ^ (2x)) / (1 + e ^ (2x)) ^ 2sin ((1-e ^ (2x)) / (1 + e ^ (2x))) Abbiamo a che fare con la regola del quoziente all'interno della regola della catena Regola della catena per coseno cos (s) rArr s '* - sin (s) Ora dobbiamo fare la regola del quoziente s = (1-e ^ (2x)) / (1 + e ^ ( 2x)) dy / dxu / v = (u'v-v'u) / v ^ 2 Regola per derivare e Regola: e ^ u rArr u'e ^ u Deriva entrambe le funzioni in alto e in basso 1-e ^ (2x ) rArr 0-2e ^ (2x) 1 + e ^ (2x) rArr 0 + 2e ^ (2x) Inseriscilo nella regola del quoziente s '= (u'v-v'u) / v ^ 2 = (- 2e ^ (2x) (1 + e ^ (2x)) - 2e ^ (2x) (1
Come si usa la definizione limite della derivata per trovare la derivata di y = -4x-2?
-4 La definizione di derivata è definita come segue: lim (h-> 0) (f (x + h) -f (x)) / h Applichiamo la formula sopra riportata sulla funzione data: lim (h-> 0) (f (x + h) -f (x)) / h = lim (h-> 0) (- 4 (x + h) -2 - (- 4x-2)) / h = lim (h-> 0 ) (- 4x-4h-2 + 4x + 2) / h = lim (h-> 0) ((- 4h) / h) Semplificazione di h = lim (h-> 0) (- 4) = -4