Risposta:
Spiegazione:
Questa è una catena abbastanza standard e un problema relativo alle regole del prodotto.
La regola della catena afferma che:
La regola del prodotto afferma che:
Combinando questi due, possiamo capire
(Perché
Quali sono i punti estremi e di sella di f (x) = 2x ^ 2 lnx?
Il dominio di definizione di: f (x) = 2x ^ 2lnx è l'intervallo x in (0, + oo). Valuta la prima e la seconda derivata della funzione: (df) / dx = 4xlnx + 2x ^ 2 / x = 2x (1 + 2lnx) (d ^ 2f) / dx ^ 2 = 2 (1 + 2lnx) + 2x * 2 / x = 2 + 4lnx + 4 = 6 + lnx I punti critici sono le soluzioni di: f '(x) = 0 2x (1 + 2lnx) = 0 e come x> 0: 1 + 2lnx = 0 lnx = -1 / 2 x = 1 / sqrt (e) In questo punto: f '' (1 / sqrte) = 6-1 / 2 = 11/2> 0 quindi il punto critico è un minimo locale. I punti della sella sono le soluzioni di: f '' (x) = 0 6 + lnx = 0 lnx = -6 x = 1 / e ^ 6 e come f '' (x)
Qual è la derivata di lnx ^ lnx?
= 2 (ln x) / x (lnx ^ lnx) ^ '= (ln x lnx) ^' = (ln ^ 2 x) ^ '= 2 ln x * 1 / x
Qual è la derivata di f (x) = (x ^ 3- (lnx) ^ 2) / (lnx ^ 2)?
Usa la regola quotata e la regola della catena. La risposta è: f '(x) = (3x ^ 3lnx ^ 2-2 (lnx) ^ 2-2x ^ 3) / (x (lnx ^ 2) ^ 2) Questa è una versione semplificata. Vedere Spiegazione per vedere fino a che punto può essere accettato come derivato. f (x) = (x ^ 3- (lnx) ^ 2) / lnx ^ 2 f '(x) = ((x ^ 3- (lnx) ^ 2)' * lnx ^ 2- (x ^ 3- ( lnx) ^ 2) (lnx ^ 2) ') / (lnx ^ 2) ^ 2 f' (x) = ((3x ^ 2-2lnx * (lnx) ') * lnx ^ 2- (x ^ 3- ( lnx) ^ 2) 1 / x ^ 2 (x ^ 2) ') / (lnx ^ 2) ^ 2 f' (x) = ((3x ^ 2-2lnx * 1 / x) * lnx ^ 2- (x ^ 3- (lnx) ^ 2) 1 / x ^ 2 * 2x) / (lnx ^ 2) ^ 2 In questo form