Risposta:
Dominio:
Gamma:
Spiegazione:
grafico {-2 (x + 3) ^ 2-5 -11.62, 8.38, -13.48, -3.48}
Questa è funzione quadratica (polinomiale) quindi non ci sono punti di discontinuità e quindi il dominio è
Tuttavia, la funzione è limitata come puoi vedere nel grafico, quindi dobbiamo trovare il limite superiore.
Così,
Finalmente:
Dominio:
Gamma:
Mostra che cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Sono un po 'confuso se creo Cos²4π / 10 = cos² (π-6π / 10) e cos²9π / 10 = cos² (π-π / 10), diventerà negativo come cos (180 ° -theta) = - costheta in il secondo quadrante. Come faccio a dimostrare la domanda?
Vedi sotto. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Lascia che il dominio di f (x) sia [-2.3] e l'intervallo sia [0,6]. Qual è il dominio e l'intervallo di f (-x)?
Il dominio è l'intervallo [-3, 2]. L'intervallo è l'intervallo [0, 6]. Esattamente com'è, questa non è una funzione, poiché il suo dominio è solo il numero -2.3, mentre il suo intervallo è un intervallo. Ma supponendo che questo sia solo un errore di battitura e che il dominio effettivo sia l'intervallo [-2, 3], questo è il seguente: Sia g (x) = f (-x). Poiché f richiede che la sua variabile indipendente prenda valori solo nell'intervallo [-2, 3], -x (negativo x) deve essere compreso tra [-3, 2], che è il dominio di g. Poiché g ottiene il suo va
Se f (x) = 3x ^ 2 eg (x) = (x-9) / (x + 1) e x! = - 1, allora cosa sarebbe f (g (x)) uguale? g (f (x))? f ^ -1 (x)? Quale sarebbe il dominio, l'intervallo e gli zeri per f (x)? Quale sarebbe il dominio, l'intervallo e gli zeri per g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = radice () (x / 3) D_f = {x in RR}, R_f = {f (x) in RR; f (x)> = 0} D_g = {x in RR; x! = - 1}, R_g = {g (x) in RR; g (x)! = 1}