Mostra che cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Sono un po 'confuso se creo Cos²4π / 10 = cos² (π-6π / 10) e cos²9π / 10 = cos² (π-π / 10), diventerà negativo come cos (180 ° -theta) = - costheta in il secondo quadrante. Come faccio a dimostrare la domanda?
Vedi sotto. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Il costo delle penne varia direttamente con il numero di penne. Una penna costa $ 2,00. Come trovi k nell'equazione per il costo delle penne, usa C = kp, e come trovi il costo totale di 12 penne?
Il costo totale di 12 penne è $ 24. C prop p:. C = k * p; C = 2,00, p = 1:. 2 = k * 1:. k = 2:. C = 2p {k è costante] p = 12, C =? C = 2 * p = 2 * 12 = $ 24,00 Il costo totale di 12 penne è $ 24,00. [Ans]
Come trovo l'integrale int (x * cos (5x)) dx?
Ti terremo a mente la formula per l'integrazione per parti, che è: int u dv = uv - int v du Per trovare questo integrale con successo lasceremo u = x, e dv = cos 5x dx. Pertanto, du = dx e v = 1/5 sin 5x. (v può essere trovato usando una rapida sostituzione con u) Il motivo per cui ho scelto x per il valore di u è perché so che in seguito finirò per integrarmi v moltiplicato per la derivata di u. Dato che la derivata di u è solo 1, e poiché l'integrazione di una funzione trigonometrica da sola non lo rende più complesso, abbiamo effettivamente rimosso la x dall'integrando