Calcola sum_ (n = 0) ^ oo sqrt (n + 3) + sqrtn-2sqrt (n + 2)?

Calcola sum_ (n = 0) ^ oo sqrt (n + 3) + sqrtn-2sqrt (n + 2)?
Anonim

Risposta:

Serie telescopica 1

Spiegazione:

#Sigma (sqrt (n + 2) - 2sqrt (n + 1) + sqrt (n)) #

#Sigma (sqrt (n + 2) - sqrt (n + 1) -sqrt (n + 1) + sqrt (n)) #

#Sigma ((sqrt (n + 2) - sqrt (n + 1)) ((sqrt (n + 2) + sqrt (n + 1)) / (sqrt (n + 2) + sqrt (n + 1))) + (- sqrt (n + 1) + sqrt (n)) ((sqrt (n + 1) + sqrt (n)) / (sqrt (n + 1) + sqrt (n))))) #

#Sigma (1 / (sqrt (n + 2) + sqrt (n + 1)) + (- 1) / (sqrt (n + 1) + sqrt (n))))) #

Questa è una serie collassante (telescopica).

Il suo primo mandato è

# -1 / (sqrt (2) + 1) = 1-sqrt2 #.

Risposta:

Vedi sotto.

Spiegazione:

Questo è equivalente a

#sum_ (n = 3) ^ oo sqrtn + sum_ (n = 1) ^ oo sqrtn - 2 sum_ (n = 2) ^ oo sqrtn = 1-sqrt2 #