Risposta:
Dal 29 è un numero dispari, il resto sembra essere 3
Spiegazione:
quando 3 ^ 0 = 1 è diviso per 4, il resto è 1
quando 3 ^ 1 = 3 è diviso per 4, il resto è 3
quando 3 ^ 2 = 9 è diviso per 4, il resto è 1
quando 3 ^ 3 = 27 è diviso per 4, il resto è 3
vale a dire
tutti i poteri pari a 3 ha il resto 1
tutti i poteri dispari di 3 ha il resto 3
Dal 29 è un numero dispari, il resto sembra essere 3
Risposta:
3
Spiegazione:
Se guardi il modello di
eccetera.
Potresti fare una congettura che se la potenza è pari, allora la parte decimale della risposta è equivalente a
Il numero di un anno passato è diviso per 2 e il risultato è capovolto e diviso per 3, poi a sinistra a destra verso l'alto e diviso per 2. Quindi le cifre nel risultato sono invertite per fare 13. Qual è l'anno passato?
Color (red) (1962) Ecco i passaggi descritti: {: ("anno", colore (bianco) ("xxx"), rarr ["risultato" 0]), (["risultato" 0] div 2 ,, rarr ["risultato" 1]), (["risultato" 1] "capovolto" ,, rarr ["risultato" 2]), (["risultato" 2] "diviso per" 3,, rarr ["risultato "3]), ((" left right-side up ") ,, (" nessun cambiamento ")), ([" result "3] div 2,, rarr [" result "4]), ([" result " 4] "cifre invertite" ,, rarr ["risultato" 5] = 13):} Ritorno all'i
Il resto di un polinomio f (x) in x è rispettivamente 10 e 15 quando f (x) è diviso per (x-3) e (x-4). Per il resto quando f (x) è diviso per (x- 3) (- 4)?
5x-5 = 5 (x-1). Ricorda che il grado del resto poly. è sempre inferiore a quella del divisore poli. Pertanto, quando f (x) è diviso per un poli quadratico. (x-4) (x-3), il resto poly. deve essere lineare, per esempio (ax + b). Se q (x) è il quoziente poli. nella divisione sopra, quindi, abbiamo, f (x) = (x-4) (x-3) q (x) + (ax + b) ............ <1> . f (x), quando diviso per (x-3) lascia il resto 10, rArr f (3) = 10 .................... [perché, "il Teorema del resto] ". Quindi, per <1>, 10 = 3a + b .................................... <2 >. Allo stesso modo, f (4) = 15 e <
Quando un polinomio è diviso per (x + 2), il resto è -19. Quando lo stesso polinomio è diviso per (x-1), il resto è 2, come si determina il resto quando il polinomio è diviso per (x + 2) (x-1)?
Sappiamo che f (1) = 2 e f (-2) = - 19 dal Teorema dei rimanenti ora troviamo il resto del polinomio f (x) quando diviso per (x-1) (x + 2) Il resto sarà di la forma Ax + B, perché è il resto dopo la divisione di un quadratico. Ora possiamo moltiplicare il divisore per il quoziente Q ... f (x) = Q (x-1) (x + 2) + Ax + B Successivo, inserisci 1 e -2 per x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Risolvendo queste due equazioni, otteniamo A = 7 e B = -5 Remainder = Ax + B = 7x-5