Risposta:
Usa la formula delle due coordinate per capire l'equazione di una linea retta.
Spiegazione:
Non so se per inclinazione intendi l'equazione della linea o semplicemente il gradiente.
Metodo solo sfumato
Per ottenere il gradiente, lo fai semplicemente
La formula espansa significa che lo facciamo
Per il tuo esempio sostituiamo i valori per ottenere
Questo si trasforma in
Equazione del metodo della linea retta
Per quanto riguarda l'equazione completa usiamo la formula delle due coordinate.
Questa formula è:
Se sostituiamo i tuoi valori otteniamo:
Riordinando i negativi otteniamo:
Semplificando otteniamo:
Ora dobbiamo riorganizzare questa espressione nella forma
Per fare questo, prima moltiplicheremo entrambi i lati per 4 per rimuovere la frazione. Se lo facciamo, otteniamo:
Quindi moltiplicheremo entrambi i lati per 3 per rimuovere l'altra frazione. Questo ci dà:
Porta via 9 da entrambi i lati per ottenere da solo:
Quindi dividere per 3:
In questo caso puoi anche ottenere il gradiente come
È interessante notare che possiamo anche usare il
Una linea passa attraverso (8, 1) e (6, 4). Una seconda linea passa attraverso (3, 5). Qual è un altro punto che può passare la seconda linea se è parallela alla prima linea?
(1,7) Quindi dobbiamo prima trovare il vettore di direzione tra (8,1) e (6,4) (6,4) - (8,1) = (- 2,3) Sappiamo che un'equazione vettoriale è costituito da un vettore di posizione e un vettore di direzione. Sappiamo che (3,5) è una posizione sull'equazione del vettore, quindi possiamo usarlo come nostro vettore posizione e sappiamo che è parallelo l'altra linea in modo che possiamo usare quel vettore di direzione (x, y) = (3, 4) + s (-2,3) Per trovare un altro punto sulla linea basta sostituire qualsiasi numero in s tranne 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Quindi (1,7) è un altro punto.
Una linea passa attraverso (4, 3) e (2, 5). Una seconda linea passa attraverso (5, 6). Qual è un altro punto che può passare la seconda linea se è parallela alla prima linea?
(3,8) Quindi dobbiamo prima trovare il vettore di direzione tra (2,5) e (4,3) (2,5) - (4,3) = (- 2,2) Sappiamo che un'equazione vettoriale è costituito da un vettore di posizione e un vettore di direzione. Sappiamo che (5,6) è una posizione sull'equazione del vettore, quindi possiamo usarlo come nostro vettore posizione e sappiamo che è parallelo l'altra linea in modo che possiamo usare quel vettore di direzione (x, y) = (5, 6) + s (-2,2) Per trovare un altro punto sulla linea basta sostituire qualsiasi numero in s tranne 0, quindi scegli 1 (x, y) = (5,6) +1 (-2,2) = (3,8) Quindi (3,8) è un
Scrivi la forma di pendenza del punto dell'equazione con la pendenza data che attraversa il punto indicato. A.) la linea con pendenza -4 che passa (5,4). e anche B.) la linea con la pendenza 2 che passa attraverso (-1, -2). per favore aiuto, questo confuso?
Y-4 = -4 (x-5) "e" y + 2 = 2 (x + 1)> "l'equazione di una linea in" colore (blu) "forma di pendenza del punto" è. • colore (bianco) (x) y-y_1 = m (x-x_1) "dove m è la pendenza e" (x_1, y_1) "un punto sulla linea" (A) "dato" m = -4 "e "(x_1, y_1) = (5,4)" sostituendo questi valori nell'equazione si ottiene "y-4 = -4 (x-5) larrcolor (blu)" in forma di pendenza del punto "(B)" dato "m = 2 "e" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (blu) " in forma di