Risposta:
Spiegazione:
Per prima cosa, prendiamo in considerazione
Integrazione per parti:
Supponiamo un'azienda che fa orologi ordini di 124 parti online il primo anno. Il secondo anno, la società ordina 496 parti online. Trova l'aumento percentuale del numero di parti ordinate online.
Vedere un processo di soluzione di seguito: La formula per calcolare la variazione percentuale in un valore tra due punti nel tempo è: p = (N - O) / O * 100 Dove: p è la variazione percentuale - per cosa stiamo risolvendo in questo problema . N è il nuovo valore - 496 parti in questo problema. O è il vecchio valore - 124 parti in questo problema. Sostituendo e risolvendo per p si ottiene: p = (496 - 124) / 124 * 100 p = 372/124 * 100 p = 37200/124 p = 300. C'è stato un aumento del 300% nel numero di parti ordinate online tra il primo e il secondo anno. La risposta è: d
Come si integra int sec ^ -1x mediante l'integrazione per metodo delle parti?
La risposta è = x "arc" secx-ln (x + sqrt (x ^ 2-1)) + C Abbiamo bisogno (sec ^ -1x) '= ("arc" secx)' = 1 / (xsqrt (x ^ 2-1)) intsecxdx = ln (sqrt (x ^ 2-1) + x) L'integrazione per parti è intu'v = uv-intuv 'Qui, abbiamo u' = 1, =>, u = xv = "arco "secx, =>, v '= 1 / (xsqrt (x ^ 2-1)) Pertanto, int" arc "secxdx = x" arc "secx-int (dx) / (sqrt (x ^ 2-1)) Esegui il secondo integrale con la sostituzione Sia x = secu, =>, dx = secutanudu sqrt (x ^ 2-1) = sqrt (sec ^ 2u-1) = tanu intdx / sqrt (x ^ 2-1) = int (secutanudu ) / (tanu) =
Come si integra int x ^ 2 e ^ (- x) dx usando l'integrazione per parti?
Intx ^ 2e ^ (- x) dx = -e ^ (- x) (x ^ 2 + 2x + 2) + C L'integrazione per parti dice che: intv (du) / (dx) = uv-intu (dv) / (dx) u = x ^ 2; (du) / (dx) = 2x (dv) / (dx) = e ^ (- x); v = -e ^ (- x) intx ^ 2e ^ (- x) dx = -x ^ 2e ^ (- x) -int-2xe ^ (- 2x) dx Ora facciamo questo: int-2xe ^ (- 2x) dx u = 2x; (du) / (dx) = 2 (dv ) / (dx) = - e ^ (- x); v = e ^ (- x) int-2xe ^ (- x) dx = 2xe ^ (- x) -int2e ^ (- x) dx = 2xe ^ ( -x) + 2e ^ (- x) intx ^ 2e ^ (- x) dx = -x ^ 2e ^ (- x) - (2xe ^ (- x) + 2e ^ (- x)) = - x ^ 2e ^ (- x) -2xe ^ (- x) -2E ^ (- x) + C = -e ^ (- x) (x ^ 2 + 2x + 2) + C