La prima equazione ci dà un'espressione immediata per
sostituendo
Le linee date si intersecano (avere una soluzione comune a)
Il grafico della linea l nel piano xy passa attraverso i punti (2,5) e (4,11). Il grafico della linea m ha una pendenza di -2 e una x-intercetta di 2. Se il punto (x, y) è il punto di intersezione delle linee l e m, qual è il valore di y?
Y = 2 Step 1: Determina l'equazione della linea l Abbiamo per la formula della pendenza m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Ora per forma di pendenza del punto l'equazione è y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 Step 2: Determina l'equazione della linea m L'intercetta x sarà sempre avere y = 0. Pertanto, il punto dato è (2, 0). Con la pendenza, abbiamo la seguente equazione. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Step 3: Scrivi e risolvi un sistema di equazioni Vogliamo trovare la soluzione del sistema {(y = 3x - 1), (y = -2x + 4):} Per
Gregory disegnò un rettangolo ABCD su un piano di coordinate. Il punto A è a (0,0). Il punto B è a (9,0). Il punto C è a (9, -9). Il punto D è a (0, -9). Trova la lunghezza del CD laterale?
CD laterale = 9 unità Se ignoriamo le coordinate y (il secondo valore in ciascun punto), è facile capire che, poiché il CD laterale inizia da x = 9 e termina con x = 0, il valore assoluto è 9: | 0 - 9 | = 9 Ricorda che le soluzioni ai valori assoluti sono sempre positive Se non capisci perché questo è, puoi anche usare la formula della distanza: P_ "1" (9, -9) e P_ "2" (0, -9 ) Nella seguente equazione, P_ "1" è C e P_ "2" è D: sqrt ((x_ "2" -x_ "1") ^ 2+ (y_ "2" -y_ "1") ^ 2 sqrt ((0 - 9) ^ 2 + (-9 - (-9
Qual è l'equazione della linea che passa attraverso il punto di intersezione delle linee y = xe x + y = 6 e che è perpendicolare alla linea con l'equazione 3x + 6y = 12?
La linea è y = 2x-3. Innanzitutto, trova il punto di intersezione di y = xe x + y = 6 utilizzando un sistema di equazioni: y + x = 6 => y = 6-xy = x => 6-x = x => 6 = 2x => x = 3 e poiché y = x: => y = 3 Il punto di intersezione delle linee è (3,3). Ora dobbiamo trovare una linea che attraversi il punto (3,3) ed è perpendicolare alla linea 3x + 6y = 12. Per trovare la pendenza della linea 3x + 6y = 12, convertirla in forma di intercetta di pendenza: 3x + 6y = 12 6y = -3x + 12 y = -1 / 2x + 2 Quindi la pendenza è -1/2. Le pendenze delle linee perpendicolari sono reciprocamente opposte