Risposta:
Spiegazione:
# "l'equazione di una linea in" colore (blu) "forma intercetta pendenza" # è.
# • colore (bianco) (x) y = mx + b #
# "dove m è la pendenza e b l'intercetta y" #
# "riorganizza" 2y = 4x-2 "in questo modulo" #
# "divide tutti i termini per 2" #
# rArry = 2x-1larrcolor (blu) "in forma di intercettazione pendenza" #
# "con pendenza" = m = 2 #
# • "Le linee parallele hanno pendenze uguali" #
#rArrm _ ("parallelo") = 2 #
# rArry = 2x + blarrcolor (blue) "è l'equazione parziale" #
# "per trovare b sostituire" (-3,5) "nell'equazione parziale" #
# 5 = -6 + brArrb = 5 + 6 = 11 #
# rArry = 2x + 11larrcolor (rosso) "equazione della linea parallela" #
Una linea passa attraverso (8, 1) e (6, 4). Una seconda linea passa attraverso (3, 5). Qual è un altro punto che può passare la seconda linea se è parallela alla prima linea?
(1,7) Quindi dobbiamo prima trovare il vettore di direzione tra (8,1) e (6,4) (6,4) - (8,1) = (- 2,3) Sappiamo che un'equazione vettoriale è costituito da un vettore di posizione e un vettore di direzione. Sappiamo che (3,5) è una posizione sull'equazione del vettore, quindi possiamo usarlo come nostro vettore posizione e sappiamo che è parallelo l'altra linea in modo che possiamo usare quel vettore di direzione (x, y) = (3, 4) + s (-2,3) Per trovare un altro punto sulla linea basta sostituire qualsiasi numero in s tranne 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Quindi (1,7) è un altro punto.
Una linea passa attraverso (4, 3) e (2, 5). Una seconda linea passa attraverso (5, 6). Qual è un altro punto che può passare la seconda linea se è parallela alla prima linea?
(3,8) Quindi dobbiamo prima trovare il vettore di direzione tra (2,5) e (4,3) (2,5) - (4,3) = (- 2,2) Sappiamo che un'equazione vettoriale è costituito da un vettore di posizione e un vettore di direzione. Sappiamo che (5,6) è una posizione sull'equazione del vettore, quindi possiamo usarlo come nostro vettore posizione e sappiamo che è parallelo l'altra linea in modo che possiamo usare quel vettore di direzione (x, y) = (5, 6) + s (-2,2) Per trovare un altro punto sulla linea basta sostituire qualsiasi numero in s tranne 0, quindi scegli 1 (x, y) = (5,6) +1 (-2,2) = (3,8) Quindi (3,8) è un
Dimostra che data una linea e un punto non su quella linea, c'è esattamente una linea che passa attraverso quel punto perpendicolare attraverso quella linea? Puoi farlo matematicamente o attraverso la costruzione (gli antichi greci fecero)?
Vedi sotto. Supponiamo che la linea data sia AB e che il punto sia P, che non è su AB. Ora, supponiamo, abbiamo disegnato una PO perpendicolare su AB. Dobbiamo dimostrare che, Questo PO è l'unica linea che passa per P che è perpendicolare a AB. Ora, useremo una costruzione. Costruiamo un altro PC perpendicolare su AB dal punto P. Now The Proof. Abbiamo, OP perpendicolare AB [Non posso usare il segno perpendicolare, come annyoing] E, inoltre, PC perpendicolare AB. Quindi, OP || PC. [Entrambi sono perpendicolari sulla stessa linea.] Ora sia l'OP che il PC hanno il punto P in comune e sono paralleli. Ci