Risposta:
y = mx + b Calcola la pendenza, m, dai valori di punto dati, risolvi per b usando uno dei valori punto e controlla la tua soluzione usando gli altri valori punto.
Spiegazione:
Una linea può essere considerata come il rapporto tra il cambiamento tra posizioni orizzontali (x) e verticali (y). Quindi, per qualsiasi due punti definiti da coordinate cartesiane (planari) come quelle date in questo problema, è sufficiente impostare le due modifiche (differenze) e quindi fare il rapporto per ottenere la pendenza, m.
Differenza verticale "y" = y2 - y1 = 4 - 0 = 4
Differenza orizzontale "x" = x2 - x1 = -6 - 2 = -8
Rapporto = "salita sopra corsa", o verticale sopra orizzontale = 4 / -8 per la pendenza, m.
Una linea ha la forma generale di y = mx + b, o la posizione verticale è il prodotto della pendenza e della posizione orizzontale, x, più il punto in cui la linea incrocia (intercetta) l'asse x (la linea dove x è sempre zero.) Quindi, una volta calcolata la pendenza, è possibile inserire uno qualsiasi dei due punti noti nell'equazione, lasciandoci solo con l'intercetta 'b' sconosciuta.
4 = (-1/2) (- 6) + b; 4 = 3 + b; 4 - 3 = b; 1 = b
Quindi l'equazione finale è y = - (1/2) x + 1
Quindi controlliamo questo sostituendo l'altro punto conosciuto nell'equazione:
0 = (-1/2) (2) + 1; 0 = -1 + 1; 0 = 0 CORRETTO!
Qual è l'equazione della linea che passa attraverso (0, -1) ed è perpendicolare alla linea che passa attraverso i seguenti punti: (13,20), (16,1)?
Y = 3/19 * x-1 La pendenza della linea passa attraverso (13,20) e (16,1) è m_1 = (1-20) / (16-13) = - 19/3 Sappiamo condizioni di la perpedicolarità tra due linee è un prodotto delle loro pendenze uguale a -1: .m_1 * m_2 = -1 o (-19/3) * m_2 = -1 o m_2 = 3/19 Quindi la linea che passa attraverso (0, -1 ) è y + 1 = 3/19 * (x-0) o y = 3/19 * x-1 grafico {3/19 * x-1 [-10, 10, -5, 5]} [Ans]
Qual è l'equazione della linea che passa attraverso l'origine ed è perpendicolare alla linea che passa attraverso i seguenti punti: (3,7), (5,8)?
Y = -2x Prima di tutto, dobbiamo trovare il gradiente della linea che passa attraverso (3,7) e (5,8) "gradiente" = (8-7) / (5-3) "gradiente" = 1 / 2 Ora poiché la nuova riga è PERPENDICOLARE alla linea che passa attraverso i 2 punti, possiamo usare questa equazione m_1m_2 = -1 dove i gradienti di due linee diverse quando moltiplicati dovrebbero essere uguali a -1 se le linee sono perpendicolari l'una all'altra cioè ad angolo retto. quindi, la tua nuova linea avrebbe un gradiente di 1 / 2m_2 = -1 m_2 = -2 Ora, possiamo usare la formula del gradiente di punto per trovare la tua equa
Qual è l'equazione della linea che passa attraverso l'origine ed è perpendicolare alla linea che passa attraverso i seguenti punti: (9,4), (3,8)?
Vedi sotto La pendenza della linea che passa (9,4) e (3,8) = (4-8) / (9-3) -2/3 quindi qualsiasi linea perpendicolare alla linea che passa (9,4 ) e (3,8) avrà una pendenza (m) = 3/2 Quindi dovremo scoprire l'equazione della linea che passa attraverso (0,0) e avere la pendenza = 3/2 l'equazione richiesta è (y-0 ) = 3/2 (x-0) ie2y-3x = 0