
Lascia che sia il vettore di velocità
Così,
E il vettore posizione è
Quindi, lo slancio angolare sull'origine è
Quindi, la magnitudine è
Il vettore di posizione di A ha le coordinate cartesiane (20,30,50). Il vettore posizione di B ha le coordinate cartesiane (10,40,90). Quali sono le coordinate del vettore posizione di A + B?

<30, 70, 140> When adding vectors, simply add the coordinates. A+B=<20, 30, 50> + <10, 40, 90> =<20+10, 30+40, 50+90> = <30, 70, 140>
La velocità di una particella che si muove lungo l'asse x è data come v = x ^ 2 - 5x + 4 (in m / s), dove x indica la coordinata x della particella in metri. Trova l'entità dell'accelerazione della particella quando la velocità della particella è zero?

A Velocità data v = x ^ 2-5x + 4 Accelerazione a - = (dv) / dt: .a = d / dt (x ^ 2-5x + 4) => a = (2x (dx) / dt-5 (dx) / dt) Sappiamo anche che (dx) / dt- = v => a = (2x -5) v a v = 0 sopra l'equazione diventa a = 0
Una particella viene proiettata da terra con una velocità di 80 m / s ad un angolo di 30 ° con orizzontale da terra. Qual è l'entità della velocità media della particella nell'intervallo di tempo t = 2s to t = 6s?

Vediamo il tempo impiegato dalla particella per raggiungere l'altezza massima, è, t = (u sin theta) / g Dato, u = 80ms ^ -1, theta = 30 così, t = 4,07 s Ciò significa che a 6s è già iniziato verso il basso. Quindi, lo spostamento verso l'alto in 2s è, s = (u sin theta) * 2 -1/2 g (2) ^ 2 = 60.4m e lo spostamento in 6s è s = (u sin theta) * 6 - 1/2 g ( 6) ^ 2 = 63.6m Quindi, il dislocamento verticale in (6-2) = 4s è (63.6-60.4) = 3.2m E lo spostamento orizzontale in (6-2) = 4s è (u cos theta * 4) = 277.13m Quindi, lo spostamento netto è 4s è sqrt (3.2 ^ 2 + 277.