Javian può giocare a 18 buche di golf in 180 minuti. Qual è il suo tasso medio in numero di minuti per buca?
Questa è solo una proporzione. Dato che la domanda chiede il tasso di MINUTES PER HOLE, il rapporto dovrebbe essere: di minuti numero di buche Quindi, dati i numeri, impostiamo come 180/18 # Dal momento che vogliamo ottenere il denominatore a 1 foro, semplifichiamo solo il numero frazione. La nostra risposta finale è 10 minuti per 1 buca.
Mostra che cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Sono un po 'confuso se creo Cos²4π / 10 = cos² (π-6π / 10) e cos²9π / 10 = cos² (π-π / 10), diventerà negativo come cos (180 ° -theta) = - costheta in il secondo quadrante. Come faccio a dimostrare la domanda?
Vedi sotto. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
A è un angolo acuto e cos A = 5/13. Senza utilizzare la moltiplicazione o la calcolatrice, trovare il valore di ciascuna delle seguenti funzioni di trigonometria a) cos (180 ° -A) b) sin (180 ° -A) c) tan (180 ° + A)?
Sappiamo che cos (180-A) = - cos A = -5 / 13 sin (180-A) = sin A = sqrt (1-cos ^ 2 A) = 12/13 tan (180 + A) = sin (180 + A) / cos (180 + A) = (- sin A) / (- cos A) = tan A = 12/5