
Risposta:
Perimetro
Spiegazione:
Questa è la geometria, quindi guardiamo una foto di ciò che abbiamo a che fare:
Ci è stato detto
e da usare
Se
e
Perimetro
Due corde parallele di un cerchio con lunghezze di 8 e 10 servono come basi di un trapezio inscritto nel cerchio. Se la lunghezza di un raggio del cerchio è 12, qual è l'area più grande possibile di tale trapezio inscritto descritto?

72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 Considera le figure. 1 e 2 Schematicamente, potremmo inserire un parallelogramma ABCD in un cerchio, e a condizione che i lati AB e CD siano accordi dei cerchi, nel modo di figura 1 o figura 2. La condizione che i lati AB e CD devono essere gli accordi del cerchio implicano che il trapezio inscritto deve essere isoscele perché le diagonali del trapezio (AC e CD) sono uguali perché un cappello BD = B cappello AC = B hatD C = Un cappello CD e la linea perpendicolare a AB e CD che passa attraverso il centro E taglia in due questi accordi (questo significa che AF = BF e CG =
Abbiamo un cerchio con un quadrato inscritto con un cerchio inscritto con un triangolo equilatero inscritto. Il diametro del cerchio esterno è di 8 piedi. Il materiale del triangolo costa $ 104,95 al piede quadrato. Qual è il costo del centro triangolare?

Il costo di un centro triangolare è $ 1090.67 AC = 8 come un dato diametro di un cerchio. Pertanto, dal Teorema di Pitagora per il triangolo isoscele di destra Delta ABC, AB = 8 / sqrt (2) Quindi, poiché GE = 1/2 AB, GE = 4 / sqrt (2) Ovviamente, triangolo Delta GHI è equilatero. Il punto E è il centro di un cerchio che circoscrive il GHI delta e, in quanto tale, è un centro di intersezione di mediani, altitudini e bisettrici angolari di questo triangolo. È noto che un punto di intersezione delle mediane divide queste mediane nel rapporto 2: 1 (per la prova vedi Unizor e segui i link Geometria
Qual è la radice quadrata di 7 + radice quadrata di 7 ^ 2 + radice quadrata di 7 ^ 3 + radice quadrata di 7 ^ 4 + radice quadrata di 7 ^ 5?

Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) La prima cosa che possiamo fare è cancellare le radici su quelle con i poteri pari. Poiché: sqrt (x ^ 2) = xe sqrt (x ^ 4) = x ^ 2 per qualsiasi numero, possiamo solo dire che sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Ora, 7 ^ 3 può essere riscritto come 7 ^ 2 * 7, e che 7 ^ 2 può uscire dalla radice! Lo stesso vale per 7 ^ 5 ma è stato riscritto come 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7)