Utilizzare il Teorema Rational Zeros per trovare gli zeri possibili della seguente funzione polinomiale: f (x) = 33x ^ 3-245x ^ 2 + 407x-35?
Gli zeri razionali possibili sono: + -1 / 33, + -1 / 11, + -5 / 33, + -7 / 33, + -5 / 11, + -7 / 11, + -1 / 3, + - 1, + -35 / 33, + -5 / 3, + -7 / 3, + -35 / 11, + -5, + -7, + -35 / 3, + -35 Dato: f (x) = 33x ^ 3-245x ^ 2 + 407x-35 Con il teorema degli zeri razionali, tutti gli zeri razionali di f (x) sono espressi nella forma p / q per gli interi p, q con pa divisore del termine costante -35 e qa divisore del coefficiente 33 del termine principale. I divisori di -35 sono: + -1, + -5, + -7, + -35 I divisori di 33 sono: + -1, + -3, + -11, + -33 Quindi gli zeri razionali possibili sono: + -1, + -5, + -7, + -35 + -1 / 3, + -5
Come si usano le formule di riduzione della potenza per riscrivere l'espressione sin ^ 8x in termini della prima potenza del coseno?
Sin ^ 8x = 1/128 [35-56cos2x + 28cos4x-8cos6x + cos8x] rarrsin ^ 8x = [(2sin ^ 2x) / 2] ^ 4 = 1/16 [{1-cos2x} ^ 2] ^ 2 = 1 / 16 [1-2cos2x + cos ^ 2 (2x)] ^ 2 = 1/16 [(1-2cos2x) ^ 2 + 2 * (1-2cos2x) * cos ^ 2 (2x) + (cos ^ 2 (2x )) ^ 2] = 1/16 [1-4cos2x + 4cos ^ 2 (2x) + 2cos ^ 2 (2x) -4cos ^ 3 (2x) + ((2cos ^ 2 (2x)) / 2) ^ 2] = 1/16 [1-4cos2x + 6cos ^ 2 (2x) - (3cos (2x) + cos6x) + ((1 + cos4x) / 2) ^ 2] = 1/16 [1-4cos2x + 3 * {1 + cos4x} - (3cos (2x) + cos6x) + ((1 + 2cos4x + cos ^ 2 (4x)) / 4)] = 1/16 [1-4cos2x + 3 + 3cos4x-3cos (2x) -cos6x + ( (2 + 4cos4x + 2cos ^ 2 (4x)) / 8)] = 1/16 [4-7cos2x + 3cos4x-cos6x + ((2 + 4
Usa il Teorema di DeMoivre per trovare la dodicesima (12 °) potenza del numero complesso e scrivi il risultato in forma standard?
(2 [cos ( frac { pi} {2}) + i sin ( frac { pi} {2})]) ^ {12} = 4096 Penso che l'interrogante stia chiedendo (2 [cos ( frac { pi} {2}) + peccato ( frac { pi} {2})]) ^ {12} usando DeMoivre. (2 [cos ( frac { pi} {2}) + i sin ( frac { pi} {2})]) ^ {12} = 2 ^ {12} (cos (pi / 2) + i sin (pi / 2)) ^ 12 = 2 ^ {12} (cos (6 pi) + i sin (6pi)) = 2 ^ 12 (1 + 0 i) = 4096 Verifica: Non abbiamo davvero bisogno di DeMoivre per questo: cos (pi / 2) + i sin (pi / 2) = 0 + 1i = ii ^ 12 = (i ^ 4) ^ 3 = 1 ^ 3 = 1 quindi rimaniamo con 2 ^ {12 }.