Quali sono i criteri necessari per dichiarare la molecola come, polare o non-polare?
Una molecola polare deve avere una carica globale su un'estremità e non avere una simmetria completa. "HCl" è polare poiché l'atomo di cloro avrà più probabilità di avere elettroni intorno ad esso quindi l'atomo di idrogeno, quindi l'atomo di cloro è più negativo. Poiché l'atomo non ha una simmetria globale, è polare. "CCl" _4 non è polare. Questo perché nonostante ci siano dipoli di legame con gli atomi di carbonio e cloro (C ^ (delta +) - Cl ^ (delta-)), c'è una simmetria complessiva. I dipoli del legame si annull
Mostra che, (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * theta / 2)?
Vedi sotto. Sia 1 + costheta + isintheta = r (cosalpha + isinalpha), qui r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2 ) -2) = 2cos (theta / 2) e tanalpha = sintheta / (1 + costheta) == (2sin (theta / 2) cos (theta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) o alpha = theta / 2 quindi 1 + costheta-isintheta = r (cos (-alpha) + isin (-alpha)) = r (cosalpha-isinalpha) e possiamo scrivere (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n usando il teorema di DE MOivre come r ^ n (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r ^ ncosnalpha = 2 * 2 ^ nc
Qual è l'equazione della linea che è normale alla curva polare f (theta) = - 5theta- sin ((3theta) / 2-pi / 3) + tan ((theta) / 2-pi / 3) a theta = pi?
La linea è y = (6 - 60pi + 4sqrt (3)) / (9sqrt (3) -52) x + ((sqrt (3) (1 - 10pi) +2) ^ 2) / (9sqrt (3) - 52) Questo colosso di un'equazione è derivato da un processo un po 'lungo. Illustrerò in primo luogo i passaggi attraverso i quali la derivazione procederà e quindi eseguirò questi passaggi. Ci viene assegnata una funzione in coordinate polari, f (theta). Possiamo prendere la derivata, f '(theta), ma per trovare effettivamente una linea in coordinate cartesiane, avremo bisogno di dy / dx. Possiamo trovare dy / dx usando la seguente equazione: dy / dx = (f '(theta) sin (theta) +