Dato due set
Una funzione è a particolare relazione che unisce ogni elemento di
Il grafico della funzione f (x) = (x + 2) (x + 6) è mostrato sotto. Quale affermazione sulla funzione è vera? La funzione è positiva per tutti i valori reali di x, dove x> -4. La funzione è negativa per tutti i valori reali di x dove -6 <x <-2.
La funzione è negativa per tutti i valori reali di x dove -6 <x <-2.
Gli zeri di una funzione f (x) sono 3 e 4, mentre gli zeri di una seconda funzione g (x) sono 3 e 7. Quali sono lo zero (s) della funzione y = f (x) / g (x )?
Solo zero di y = f (x) / g (x) è 4. Poiché gli zeri di una funzione f (x) sono 3 e 4, questo significa (x-3) e (x-4) sono fattori di f (x ). Inoltre, gli zeri di una seconda funzione g (x) sono 3 e 7, che significa (x-3) e (x-7) sono fattori di f (x). Ciò significa nella funzione y = f (x) / g (x), sebbene (x-3) debba cancellare il denominatore g (x) = 0 non è definito, quando x = 3. Inoltre, non è definito quando x = 7. Quindi, abbiamo un buco in x = 3. e solo zero di y = f (x) / g (x) è 4.
Come trovi il dominio e l'intervallo della relazione e dichiari se la relazione è o meno una funzione (0,1), (3,2), (5,3), (3,4)?
Dominio: 0, 3, 5 Intervallo: 1, 2, 3, 4 Non una funzione Quando ti viene assegnata una serie di punti, il dominio è uguale all'insieme di tutti i valori x che ti vengono dati e l'intervallo è uguale all'insieme di tutti i valori y. La definizione di una funzione è che per ogni input non c'è più di un output. In altre parole, se scegli un valore per x non dovresti ottenere 2 valori y. In questo caso, la relazione non è una funzione poiché l'input 3 fornisce sia un'uscita di 4 sia un'uscita di 2.