Il grafico della funzione f (x) = (x + 2) (x + 6) è mostrato sotto. Quale affermazione sulla funzione è vera? La funzione è positiva per tutti i valori reali di x, dove x> -4. La funzione è negativa per tutti i valori reali di x dove -6 <x <-2.
La funzione è negativa per tutti i valori reali di x dove -6 <x <-2.
La somma delle cifre del numero di tre cifre è 15. La cifra dell'unità è inferiore alla somma delle altre cifre. La cifra delle decine è la media delle altre cifre. Come trovi il numero?
A = 3 ";" b = 5 ";" c = 7 Dato: a + b + c = 15 ................... (1) c <b + a ............................... (2) b = (a + c) / 2 ...... ........................ (3) '~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ Considera l'equazione (3) -> 2b = (a + c) Scrivi l'equazione (1) come (a + c) + b = 15 Per sostituzione questo diventa 2b + b = 15 colori (blu) (=> b = 5) '~~~~~~~~~~~~~~~~~~~~~~~~~ Ora abbiamo: a + 5 + c = 15. .................. (1_a) c <5 + a ........................ ...... (2_a) 5 = (a + c) / 2 .............................. (3_a ) '~~~~~~~~~~~~~~~~~~~~~~~~~~ Da 1_a
Quali sono le caratteristiche del grafico della funzione f (x) = (x + 1) ^ 2 + 2? Controlla tutte le applicazioni. Il dominio è tutti numeri reali. L'intervallo è tutti i numeri reali maggiori o uguali a 1. L'intercetta y è 3. Il grafico della funzione è 1 unità in alto e
Il primo e il terzo sono veri, il secondo è falso, il quarto non è finito. - Il dominio è in effetti tutti i numeri reali. Puoi riscrivere questa funzione come x ^ 2 + 2x + 3, che è un polinomio, e come tale ha dominio mathbb {R} L'intervallo non è tutto il numero reale maggiore o uguale a 1, perché il minimo è 2. In fatto. (x + 1) ^ 2 è una traslazione orizzontale (una unità a sinistra) della parabola "strandard" x ^ 2, che ha intervallo [0, infty). Quando aggiungi 2, il grafico viene spostato verticalmente di due unità, quindi l'intervallo you è [2,