Risposta:
Il resto è uguale a
Spiegazione:
Prima di tutto questo problema può essere riaffermato come dover trovare il valore di
Per risolvere questo problema è necessario conoscere il Teorema di Eulero. Il teorema di Eulero lo afferma
Ora che conosciamo il Teorema di Eulero, possiamo risolvere questo problema.
Si noti che tutti i numeri primi diversi da
Da
Pertanto, ora abbiamo
L'espressione sopra può essere tradotta
Ora dobbiamo solo rendere conto
Pertanto, complessivamente l'abbiamo dimostrato
Il resto di un polinomio f (x) in x è rispettivamente 10 e 15 quando f (x) è diviso per (x-3) e (x-4). Per il resto quando f (x) è diviso per (x- 3) (- 4)?
5x-5 = 5 (x-1). Ricorda che il grado del resto poly. è sempre inferiore a quella del divisore poli. Pertanto, quando f (x) è diviso per un poli quadratico. (x-4) (x-3), il resto poly. deve essere lineare, per esempio (ax + b). Se q (x) è il quoziente poli. nella divisione sopra, quindi, abbiamo, f (x) = (x-4) (x-3) q (x) + (ax + b) ............ <1> . f (x), quando diviso per (x-3) lascia il resto 10, rArr f (3) = 10 .................... [perché, "il Teorema del resto] ". Quindi, per <1>, 10 = 3a + b .................................... <2 >. Allo stesso modo, f (4) = 15 e <
Qual è la probabilità che il primo figlio di una donna di cui è affetto il fratello sia interessato? Qual è la probabilità che il secondo figlio di una donna di cui è affetto il fratello sarà interessato se il suo primo figlio è stato colpito?
P ("il primo figlio ha DMD") = 25% P ("il secondo figlio ha DMD" | "il primo figlio ha DMD") = 50% Se il fratello di una donna ha DMD, allora la madre della donna è portatrice del gene. La donna riceverà metà dei suoi cromosomi da sua madre; quindi c'è una probabilità del 50% che la donna erediterà il gene. Se la donna ha un figlio, erediterà metà dei suoi cromosomi da sua madre; quindi ci sarebbe il 50% di possibilità se sua madre fosse portatrice di avere il gene difettoso. Quindi se una donna ha un fratello con DMD c'è un 50% XX50% =
Quando un polinomio è diviso per (x + 2), il resto è -19. Quando lo stesso polinomio è diviso per (x-1), il resto è 2, come si determina il resto quando il polinomio è diviso per (x + 2) (x-1)?
Sappiamo che f (1) = 2 e f (-2) = - 19 dal Teorema dei rimanenti ora troviamo il resto del polinomio f (x) quando diviso per (x-1) (x + 2) Il resto sarà di la forma Ax + B, perché è il resto dopo la divisione di un quadratico. Ora possiamo moltiplicare il divisore per il quoziente Q ... f (x) = Q (x-1) (x + 2) + Ax + B Successivo, inserisci 1 e -2 per x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Risolvendo queste due equazioni, otteniamo A = 7 e B = -5 Remainder = Ax + B = 7x-5