La somma di 6 numeri dispari consecutivi è 20. Qual è il quarto numero in questa sequenza?

La somma di 6 numeri dispari consecutivi è 20. Qual è il quarto numero in questa sequenza?
Anonim

Risposta:

Non esiste una tale sequenza di #6# numeri dispari consecutivi.

Spiegazione:

Indichiamo il quarto numero di # N #.

Quindi i sei numeri sono:

# n-6, n-4, n-2, colore (blu) (n), n + 2, n + 4 #

e noi abbiamo:

# 20 = (n-6) + (n-4) + (n-2) + n + (n + 2) + (n + 4) #

#color (bianco) (20) = (n-6) + 5n #

#color (bianco) (20) = 6n-6 #

Inserisci #6# ad entrambe le estremità per ottenere:

# 26 = 6n #

Dividi entrambi i lati #6# e trasporre per trovare:

#n = 26/6 = 13/3 #

Hmmm. Quello non è un numero intero, per non dire un numero intero dispari.

Quindi non esiste una sequenza adeguata di #6# numeri interi consecutivi.

#colore bianco)()#

Quali sono le possibili somme di una sequenza di #6# numeri dispari consecutivi?

Lascia che la media dei numeri sia il numero pari # # 2k dove #K# è un numero intero

Quindi i sei numeri dispari consectuvie sono:

# 2k-5, 2k-3, 2k-1, 2k + 1, 2k + 3, 2k + 5 #

La loro somma è:

# (2k-5) + (2k-3) + (2k-1) + (2k + 1) + (2k + 3) + (2k + 5) = 12k #

Quindi qualsiasi multiplo di #12# è una possibile somma.

Forse la somma nella domanda avrebbe dovuto essere #120# piuttosto che #20#. Quindi il quarto numero sarebbe #21#.