Qual è la seconda derivata della funzione f (x) = sec x?

Qual è la seconda derivata della funzione f (x) = sec x?
Anonim

Risposta:

#f '' (x) = sec x (sec ^ 2 x + tan ^ 2 x) #

Spiegazione:

data funzione:

#f (x) = sec x #

Differenziare w.r.t. #X# come segue

# frac {d} {dx} f (x) = frac {d} {dx} (sec x) #

#f '(x) = sec x tan x #

Di nuovo, differenziando #f '(x) # w.r.t. #X#, noi abbiamo

# frac {d} {dx} f '(x) = frac {d} {dx} (sec x tan x) #

#f '' (x) = sec x frac {d} {dx} tan x + tan x frac {d} {dx} secx #

# = sec xsec ^ 2 x + tan x sec x tan x #

# = sec ^ 3 x + sec x tan ^ 2 x #

# = sec x (sec ^ 2 x + tan ^ 2 x) #