Risposta:
Punto medio
Spiegazione:
Immagina la linea tra questi punti proiettando ombre sull'asse. Quindi il punto centrale di queste 'ombre' saranno anche le coordinate per il punto medio della linea
Così
Fai punto
Fai punto
Poi
Punto medio
Punto medio
Il peso medio di 25 studenti in una classe è di 58 kg. Il peso medio di una seconda classe di 29 studenti è di 62 kg. Come trovi il peso medio di tutti gli studenti?
Il peso medio o medio di tutti gli studenti è di 60,1 kg arrotondato al decimo più vicino. Questo è un problema medio ponderato. La formula per determinare una media ponderata è: colore (rosso) (w = ((n_1 xx a_1) + (n_2 xx a_2)) / (n_1 + n_2)) Dove w è la media ponderata, n_1 è il numero di oggetti in il primo gruppo e a_1 è la media del primo gruppo di oggetti. n_2 è il numero di oggetti nel secondo gruppo e a_2 è la media del secondo gruppo di oggetti. Abbiamo ricevuto n_1 come 25 studenti, a_1 come 58 kg, n_2 come 29 studenti e a_2 come 62 kg. Sostituendo questi nella formula
Il punto A è a (-2, -8) e il punto B è a (-5, 3). Il punto A viene ruotato (3pi) / 2 in senso orario sull'origine. Quali sono le nuove coordinate del punto A e di quanto è cambiata la distanza tra i punti A e B?
Lasciare la coordinata polare iniziale di A, (r, theta) Dato la coordinata cartesiana iniziale di A, (x_1 = -2, y_1 = -8) Quindi possiamo scrivere (x_1 = -2 = rcosthetaandy_1 = -8 = rsintheta) Dopo 3pi / 2 rotazione in senso orario la nuova coordinata di A diventa x_2 = rcos (-3pi / 2 + theta) = rcos (3pi / 2-theta) = - rsintheta = - (- 8) = 8 y_2 = rsin (-3pi / 2 + theta ) = - rsin (3pi / 2-theta) = rcostheta = -2 Distanza iniziale di A da B (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) = sqrt130 distanza finale tra la nuova posizione di A ( 8, -2) e B (-5,3) d_2 = sqrt (13 ^ 2 + 5 ^ 2) = sqrt194 So Difference = sqrt194-sqrt130 cons
Punti (-9, 2) e (-5, 6) sono punti finali del diametro di un cerchio Qual è la lunghezza del diametro? Qual è il punto centrale C del cerchio? Dato il punto C che hai trovato nella parte (b), indica il punto simmetrico rispetto a C sull'asse x
D = sqrt (32) = 4sqrt (2) ~~ 5.66 centro, C = (-7, 4) punto simmetrico sull'asse x: (-7, -4) Dato: punti finali del diametro di un cerchio: (- 9, 2), (-5, 6) Usa la formula della distanza per trovare la lunghezza del diametro: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5,66 Usa la formula del punto medio per trova il centro: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Usa la regola delle coordinate per la riflessione sull'asse x (x, y) -> (x, -y): (-7, 4) p