Risposta:
Il riflesso della funzione esponenziale sull'asse
Spiegazione:
I logaritmi sono l'inverso di una funzione esponenziale, quindi per
Quindi, la funzione di registro ti dice quale potenza
Grafico di
graph {ln (x) -10, 10, -5, 5}
Grafico di
graph {e ^ x -10, 10, -5, 5}
La funzione p = n (1 + r) ^ t dà la popolazione attuale di una città con un tasso di crescita di r, t anni dopo che la popolazione era n. Quale funzione può essere utilizzata per determinare la popolazione di una città che aveva una popolazione di 500 persone 20 anni fa?
La popolazione sarebbe data da P = 500 (1 + r) ^ 20 Poiché la popolazione di 20 anni fa era 500 tasso di crescita (della città è r (in frazioni - se è r% lo rende r / 100) e ora (cioè 20 anni dopo la popolazione sarebbe stata data da P = 500 (1 + r) ^ 20
Sia f (x) = x-1. 1) Verifica che f (x) non sia né pari né dispari. 2) Can f (x) può essere scritto come somma di una funzione pari e di una funzione dispari? a) Se è così, mostra una soluzione. Ci sono più soluzioni? b) In caso contrario, dimostrare che è impossibile.
Sia f (x) = | x -1 |. Se f fosse pari, allora f (-x) sarebbe uguale a f (x) per tutti x. Se f fosse dispari, allora f (-x) sarebbe uguale a -f (x) per tutti x. Osservare che per x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Poiché 0 non è uguale a 2 o a -2, f non è né pari né dispari. Potrebbe essere scritto come g (x) + h (x), dove g è pari eh è dispari? Se fosse vero allora g (x) + h (x) = | x - 1 |. Chiama questa affermazione 1. Sostituisci x di -x. g (-x) + h (-x) = | -x - 1 | Poiché g è pari ed è dispari, abbiamo: g (x) - h (x) = | -x - 1 | Chiama questa affermazione 2.
Qual è l'inverso di una funzione logaritmica?
Una funzione esponenziale è l'inverso di una funzione logaritmica. Sia: log_b (x) = y => passa x e y: log_b (y) = x => risolva per y: b ^ [log_b (y)] = b ^ xy = b ^ x => quindi: log_b (x ) e b ^ x sono le funzioni inverse.