Risposta:
Vedi l'intera procedura di soluzione di seguito:
Spiegazione:
Il teorema di Pitagora afferma:
Sostituendo per
Usando il Teorema di Pitagora, come trovi la lunghezza di una gamba di un triangolo rettangolo se l'altra gamba è lunga 8 piedi e l'ipotenusa è 20?
La lunghezza dell'altra gamba del triangolo rettangolo è 18,33 piedi Secondo il teorema di Pitagora, in un triangolo rettangolo, il quadrato dell'ipotenusa è uguale alla somma dei quadrati degli altri due lati. Qui nel triangolo ad angolo retto, l'ipotenusa è di 20 piedi e un lato è di 8 piedi, l'altro lato è sqrt (20 ^ 2-8 ^ 2) = sqrt (400-64) = sqrt336 = sqrt (2xx2xx2xx2xx3xx7) = 4sqrt21 = 4xx4 .5826 = 18.3304 dicono 18.33 piedi.
Usando il teorema di Pitagora, come troveresti B se A = 12 ec = 17?
A seconda del lato è l'ipotenusa, b = sqrt145, o b = sqrt 433 Non è chiaro dalla domanda quale lato è l'ipotenusa. I lati vengono solitamente indicati come AB o c e non A o B che indicano punti. Prendiamo in considerazione entrambi i casi. "Se c è l'ipotenusa" a ^ 2 + b ^ 2 = c ^ 2 "" rArr b ^ 2 = c ^ 2 - a ^ 2 b ^ 2 = 17 ^ 2 - 12 ^ 2 b ^ 2 = 145 b = sqrt145 = 12.04 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Se c è NON l'ipotenusa. b ^ 2 = a ^ 2 + c ^ 2 b ^ 2 = 12 ^ 2 + 17 ^ 2 b ^ 2 = 433 b = sqrt 433 = 20,81
Qual è la differenza tra il Teorema di Pitagora e il Triplice di Pitagora?
Il teorema è un'affermazione di fatto sui lati di un triangolo triangolare ad angolo retto, e le triple sono impostate su tre valori esatti che sono validi per il teorema. Il teorema di Pitagora è l'affermazione che esiste una relazione specifica tra i lati di un triangolo rettangolo. es .: a ^ 2 = b ^ 2 + c ^ 2 Nel trovare la lunghezza di un lato, l'ultimo passo consiste nel trovare una radice quadrata che è spesso un numero irrazionale. Ad esempio, se i lati più corti sono 6 e 9 cm, l'ipotenusa sarà: c ^ 2 = 6 ^ 2 + 9 ^ 2 = 117 c = sqrt117 = 10.8166538 ......... Questo teorema SEM