Possiamo dire che il peso dei dadi è diminuito a causa della forza di galleggiamento dell'acqua su di esso.
Quindi, lo sappiamo, forza di galleggiamento dell'acqua che agisce su una sostanza = peso in aria - peso in acqua
Quindi, qui il valore è
Quindi, questa forza aveva agito sull'intero volume
Quindi, possiamo scrivere,
Dato,
Così,
Per un dado, se la sua lunghezza di un lato è
Così,
o,
quindi, la sua parte sarà
L'acqua viene scaricata da un serbatoio conico di 10 piedi di diametro e 10 piedi di profondità ad una velocità costante di 3 piedi 3 / min. Quanto è veloce la caduta del livello dell'acqua quando la profondità dell'acqua è di 6 piedi?
Il rapporto tra raggio, r, della superficie superiore dell'acqua rispetto alla profondità dell'acqua, w è una costante che dipende dalle dimensioni generali del cono / w = 5/10 rarr r = w / 2 Il volume del cono di l'acqua è data dalla formula V (w, r) = pi / 3 r ^ 2w o, in termini di w solo per la situazione data V (w) = pi / (12) w ^ 3 (dV) / (dw) = pi / 4w ^ 2 rarr (dw) / (dV) = 4 / (piw ^ 2) Ci viene detto che (dV) / (dt) = -3 (cu.ft./min.) (dw) / ( dt) = (dw) / (dV) * (dV) / (dt) = 4 / (piw ^ 2) * (- 3) = (- 12) / (piw ^ 2) Quando w = 6 la profondità dell'acqua è cambiando ad un
L'acqua esce da una vasca conica rovesciata ad una velocità di 10.000 cm3 / min, allo stesso tempo l'acqua viene pompata nel serbatoio ad una velocità costante Se il serbatoio ha un'altezza di 6 metri e il diametro nella parte superiore è 4 metri e se il livello dell'acqua aumenta di 20 cm / min quando l'altezza dell'acqua è di 2 metri, come si trova la velocità con cui viene pompata l'acqua nel serbatoio?
Sia V il volume d'acqua nel serbatoio, in cm ^ 3; sia la profondità / altezza dell'acqua, in cm; e sia r il raggio della superficie dell'acqua (in alto), in cm. Poiché il serbatoio è un cono invertito, lo è anche la massa d'acqua. Dato che il serbatoio ha un'altezza di 6 me un raggio nella parte superiore di 2 m, triangoli simili implicano che frac {h} {r} = frac {6} {2} = 3 in modo che h = 3r. Il volume del cono invertito dell'acqua è quindi V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Ora differenziate entrambi i lati rispetto al tempo t (in minuti) per ottenere frac {dV} {
I delfini emettono suoni nell'aria e nell'acqua. Qual è il rapporto tra la lunghezza d'onda del loro suono nell'aria e la sua lunghezza d'onda nell'acqua? Il suono della velocità in aria è di 343 m / se in acqua è di 1540 m / s.
Quando un'onda cambia medium, la sua frequenza non cambia in quanto la frequenza dipende dalla sorgente e non dalle proprietà del media. Ora, conosciamo la relazione tra lunghezza d'onda lambda, velocità v e frequenza nu di un'onda come, v = nulambda Or, nu = v / lambda Oppure, v / lambda = costante Quindi, lascia che la velocità del suono nell'aria sia v_1 con lunghezza d'onda lambda_1 e quella di v_2 e lambda_2 in acqua, Quindi, possiamo scrivere, lambda_1 / lambda_2 = v_1 / v_2 = 343 / 1540 = 0,23