Risposta:
Spiegazione:
Il primo passo è distribuire la staffa.
# rArr5y (y ^ 5 + 8y ^ 3) = 5y ^ 6 + 40y ^ 4 "in formato standard" # esprimere un polinomio in forma standard significa scrivere il termine con la massima potenza della variabile, seguito da poteri discendenti della variabile fino all'ultimo termine, di solito una costante.
Qui ci sono solo 2 termini. Quello con la massima potenza dell'essere variabile
# 5Y ^ 6 #
La larghezza di un campo da giuoco rettangolare è di 2x5 piedi e la lunghezza è di 3x + 9 piedi. Come si scrive un polinomio P (x) che rappresenta il perimetro e quindi si valuta questo perimetro e quindi si valuta questo polinomio perimetrale se x è 4 piedi?
Il perimetro è il doppio della somma della larghezza e della lunghezza. P (x) = 2 ((2x-5) + (3x + 9)) = 2 (5x + 4) = 10x + 8 P (4) = 10 (4) + 8 = 48 Verifica. x = 4 significa una larghezza di 2 (4) -5 = 3 e una lunghezza di 3 (4) + 9 = 21, quindi un perimetro di 2 (3 + 21) = 48. quad sqrt
Quando un polinomio è diviso per (x + 2), il resto è -19. Quando lo stesso polinomio è diviso per (x-1), il resto è 2, come si determina il resto quando il polinomio è diviso per (x + 2) (x-1)?
Sappiamo che f (1) = 2 e f (-2) = - 19 dal Teorema dei rimanenti ora troviamo il resto del polinomio f (x) quando diviso per (x-1) (x + 2) Il resto sarà di la forma Ax + B, perché è il resto dopo la divisione di un quadratico. Ora possiamo moltiplicare il divisore per il quoziente Q ... f (x) = Q (x-1) (x + 2) + Ax + B Successivo, inserisci 1 e -2 per x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Risolvendo queste due equazioni, otteniamo A = 7 e B = -5 Remainder = Ax + B = 7x-5
Quando il polinomio p (x) è diviso per (x + 2) il quoziente è x ^ 2 + 3x + 2 e il resto è 4. Qual è il polinomio p (x)?
X ^ 3 + 5x ^ 2 + 8x + 6 abbiamo p (x) = (x ^ 2 + 3x + 2) (x + 2) +2 = x ^ 3 + 2x ^ 2 + 3x ^ 2 + 6x + 2x + 4 + 2 = x ^ 3 + 5x ^ 2 + 8x + 6