Risposta:
Calcolato per ogni passaggio in modo da poter vedere da dove viene tutto (risposta lunga!)
Spiegazione:
Si tratta di comprendere la manipolazione e cosa significano:
Dato che:
.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
Per prima cosa devi capirlo
Devi anche saperlo
Quindi scrivi (1) come:
Il fatto è che abbiamo bisogno di Gat
Per prima cosa dobbiamo liberarci della radice. Questo può essere fatto quadrando tutto in (2) dando:
Ora mettiamo tutto il lato destro su un denominatore comune
.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
Ma
così
.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
La sostituzione dà:
Abbiamo bisogno
Cos'è sqrt (12 + sqrt (12 + sqrt (12 + sqrt (12 + sqrt (12 ....)))))?
4 C'è un trucco matematico davvero interessante dietro di esso. Se vedi una domanda come questa prendi il numero al suo interno (in questo caso è 12) Prendi numeri consecutivi come: n (n + 1) = 12 Ricorda sempre che la risposta è n + 1 Questo è vero perché se lasci la funzione radicale annidata infinita = x quindi rendi conto che x si trova anche sotto il primo segno di radice come: x = sqrt (12 + x) Quindi, quadrando entrambi i lati: x ^ 2 = 12 + x Or: x ^ 2 - x = 12 x (x-1) = 12 Ora sia x = n + 1 Allora n (n + 1) = 12 Con la risposta alla funzione radicale annidata infinita (x) uguale a n + 1
Che cosa è (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5) sqrt (3)) / (sqrt (3+) sqrt (3) sqrt (5))?
2/7 Prendiamo, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (cancel (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - cancel (2sqrt15) -5 + 2 * 3 + cancel (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Si noti che, se nei denominatori sono (sqrt3 + sqrt (3 + sqrt5))
Come si semplifica (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?
Ampia formattazione matematica ...> colore (blu) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) ) / (sqrt (a + 1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) = colore (rosso) (((1 / sqrt (a- 1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a +1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) = colore ( blu) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a -1)))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) = colore (rosso) ((1 / sqrt