Risposta:
Spiegazione:
Il prodotto incrociato di due vettori produce un vettore ortogonale ai due vettori originali. Questo sarà normale per l'aereo.
Qual è il vettore unitario che è ortogonale al piano contenente (20j + 31k) e (32i-38j-12k)?
Il vettore unitario è == 1 / 1507.8 <938,992, -640> Il vettore ortogonale a 2 vectros in un piano viene calcolato con il determinante | (veci, vecj, veck), (d, e, f), (g, h, i) | dove <d, e, f> e <g, h, i> sono i 2 vettori Qui, abbiamo veca = <0,20,31> e vecb = <32, -38, -12> Pertanto, | (veci, vecj, veck), (0,20,31), (32, -38, -12) | = Veci | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + Veck | (0,20), (32, -38) | = veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + veck (0 * -38-32 * 20) = <938,992, -640> = vecc Verifica facendo 2 punti prodotti <938,992, -640>. <0
Qual è il vettore unitario che è ortogonale al piano contenente (29i-35j-17k) e (41j + 31k)?
Il vettore unitario è = 1 / 1540,3 <-388, -899,1189> Il vettore perpendicolare a 2 vettori viene calcolato con il determinante (prodotto trasversale) | (veci, vecj, veck), (d, e, f), (g, h, i) | dove <d, e, f> e <g, h, i> sono i 2 vettori Qui, abbiamo veca = <29, -35, -17> e vecb = <0,41,31> Pertanto, | (veci, vecj, veck), (29, -35, -17), (0,41,31) | = Veci | (-35, -17), (41,31) | -vecj | (29, -17), (0,31) | + Veck | (29, -35), (0,41) | = veci (-35 * 31 + 17 * 41) -vecj (29 * 31 + 17 * 0) + veck (29 * 41 + 35 * 0) = <- 388, -899,1189> = vecc Verifica facendo 2 punto prodotti <-38
Qual è il vettore unitario che è ortogonale al piano contenente (29i-35j-17k) e (20j + 31k)?
Il prodotto incrociato è perpendicolare a ciascuno dei suoi vettori fattore e al piano che contiene i due vettori. Dividilo per la sua lunghezza per ottenere un vettore unitario.Trova il prodotto incrociato di v = 29i - 35j - 17k ... e ... w = 20j + 31k v xx w = (29, -35, -17) xx (0,20,31) Calcola questo facendo il determinante | ((i, j, k), (29, -35, -17), (0,20,31)) |. Dopo aver trovato v xx w = (a, b, c) = ai + bj + ck, allora il tuo vettore normale unità può essere n o -n dove n = (v xx w) / sqrt (a ^ 2 + b ^ 2 + c ^ 2). Puoi fare l'aritmetica, giusto? // Dansmath è dalla tua parte!