
Risposta:
65
Spiegazione:
Lascia che sia il primo numero
Quindi i 6 numeri consecutivi sono:
Risposta:
65
Spiegazione:
Lascia che siano i numeri
Questi aggiungono a 393 così
La somma di due numeri consecutivi è 77. La differenza di metà del numero più piccolo e di un terzo del numero più grande è 6. Se x è il numero più piccolo y è il numero più grande, che due equazioni rappresentano la somma e la differenza di i numeri?

X + y = 77 1 / 2x-1 / 3y = 6 Se vuoi conoscere i numeri che puoi continuare a leggere: x = 38 y = 39
Conoscendo la formula alla somma degli N interi a) qual è la somma dei primi N interi consecutivi quadrati, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Somma dei primi N interi cubici consecutivi Sigma_ (k = 1) ^ N k ^ 3?

Per S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Abbiamo sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 solving per sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ma sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n + 1
"Lena ha 2 numeri interi consecutivi.Si accorge che la loro somma è uguale alla differenza tra i loro quadrati. Lena prende altri 2 numeri interi consecutivi e nota la stessa cosa. Dimostrare algebricamente che questo è vero per ogni 2 numeri interi consecutivi?

Si prega di fare riferimento alla Spiegazione. Ricorda che gli interi consecutivi differiscono di 1. Quindi, se m è un numero intero, allora, il numero intero successivo deve essere n + 1. La somma di questi due numeri interi è n + (n + 1) = 2n + 1. La differenza tra i loro quadrati è (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, come desiderato! Senti la gioia della matematica.!