Risposta:
La larghezza del rettangolo è
Spiegazione:
Consideriamo la larghezza del rettangolo come
Apri le parentesi e semplifica.
Sottrarre
Fattorizza.
L'unica possibilità nel problema precedente è quella
Questo renderà la larghezza
La diagonale di un rettangolo è di 13 pollici. La lunghezza del rettangolo è 7 pollici più lunga della sua larghezza. Come trovi la lunghezza e la larghezza del rettangolo?
Chiamiamo la larghezza x. Quindi la lunghezza è x + 7 La diagonale è l'ipotenusa di un triangolo rettangolare. Quindi: d ^ 2 = l ^ 2 + w ^ 2 o (riempiendo ciò che sappiamo) 13 ^ 2 = 169 = (x + 7) ^ 2 + x ^ 2 = x ^ 2 + 14x + 49 + x ^ 2 -> 2x ^ 2 + 14x-120 = 0-> x ^ 2 + 7x-60 = 0 Una semplice equazione quadratica che si risolve in: (x + 12) (x-5) = 0-> x = -12orx = 5 Solo la soluzione positiva è utilizzabile così: w = 5 e l = 12 Extra: Il triangolo (5,12,13) è il secondo più semplice triangolo pitagorico (dove tutti i lati sono numeri interi). Il più semplice è (3,4,
La lunghezza di un rettangolo è di 3,5 pollici in più della sua larghezza. Il perimetro del rettangolo è 31 pollici. Come trovi la lunghezza e la larghezza del rettangolo?
Lunghezza = 9.5 ", Larghezza = 6" Iniziare con l'equazione perimetrale: P = 2l + 2w. Quindi inserisci le informazioni che conosciamo. Il perimetro è 31 "e la lunghezza è uguale alla larghezza + 3,5". Quindi: 31 = 2 (w + 3,5) + 2w perché l = w + 3,5. Quindi risolviamo per w dividendo tutto per 2. Siamo quindi rimasti con 15,5 = w + 3,5 + w. Quindi sottrarre 3.5 e combinare le w per ottenere: 12 = 2w. Finalmente dividi per 2 di nuovo per trovare w e otteniamo 6 = w. Questo ci dice che la larghezza è pari a 6 pollici, metà del problema. Per trovare la lunghezza, inseriamo sempl
La larghezza di un rettangolo è 3 pollici inferiore alla sua lunghezza. L'area del rettangolo è di 340 pollici quadrati. Quali sono la lunghezza e la larghezza del rettangolo?
Lunghezza e larghezza sono rispettivamente 20 e 17 pollici. Prima di tutto, consideriamo x la lunghezza del rettangolo e la sua larghezza. Secondo l'affermazione iniziale: y = x-3 Ora sappiamo che l'area del rettangolo è data da: A = x cdot y = x cdot (x-3) = x ^ 2-3x ed è uguale a: A = x ^ 2-3x = 340 Quindi otteniamo l'equazione quadratica: x ^ 2-3x-340 = 0 Risolviamolo: x = {-b pm sqrt {b ^ 2-4ac}} / {2a} dove a, b, c provengono da ax ^ 2 + bx + c = 0. Sostituendo: x = {- (- 3) pm sqrt {(- 3) ^ 2-4 cdot 1 cdot (-340)}} / {2 cdot 1} = = {3 pm sqrt {1369}} / {2 } = {3 pm 37} / 2 Otteniamo due soluzion