Risposta:
Spiegazione:
Lascia che siano gli interi
Quindi, secondo il problema,
Quindi, The Integers sono
Risposta:
Spiegazione:
# "Lascia un intero" = n #
# "quindi un intero consecutivo" = n + 1 #
# RArrn + n + 1 = 679 #
# RArr2n + 1 = 679 #
# "sottrarre 1 da entrambi i lati" #
# RArr2n = 678 #
# "divide entrambi i lati di 2" #
# RArrn = 678/2 = 339 #
# RArrn +1 = 339 + 1 = 340 #
# "i 2 numeri interi consecutivi sono" 339 "e" 340 #
Risposta:
Spiegazione:
Sia n un qualunque numero intero, quindi il successivo numero intero consecutivo è 1 maggiore.i.e
La somma è 679
Semplificazione:
Sottrai 1 da entrambi i lati:
Dividi entrambi i lati per 2:
Abbiamo:
Il nostro numero sono:
Tre numeri interi consecutivi possono essere rappresentati da n, n + 1 e n + 2. Se la somma di tre numeri interi consecutivi è 57, quali sono gli interi?
18,19,20 Sum è l'aggiunta del numero così la somma di n, n + 1 e n + 2 può essere rappresentata come, n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18 quindi il nostro primo intero è 18 (n) il nostro secondo è 19, (18 + 1) e il nostro terzo è 20, (18 + 2).
Conoscendo la formula alla somma degli N interi a) qual è la somma dei primi N interi consecutivi quadrati, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Somma dei primi N interi cubici consecutivi Sigma_ (k = 1) ^ N k ^ 3?
Per S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Abbiamo sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 solving per sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ma sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n + 1
"Lena ha 2 numeri interi consecutivi.Si accorge che la loro somma è uguale alla differenza tra i loro quadrati. Lena prende altri 2 numeri interi consecutivi e nota la stessa cosa. Dimostrare algebricamente che questo è vero per ogni 2 numeri interi consecutivi?
Si prega di fare riferimento alla Spiegazione. Ricorda che gli interi consecutivi differiscono di 1. Quindi, se m è un numero intero, allora, il numero intero successivo deve essere n + 1. La somma di questi due numeri interi è n + (n + 1) = 2n + 1. La differenza tra i loro quadrati è (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, come desiderato! Senti la gioia della matematica.!