Risposta:
L'area massima possibile del triangolo B è
L'area minima possibile del triangolo B è
Spiegazione:
Area del triangolo
Angolo compreso tra i lati
lati
Lato
Poi
L'area massima possibile sarà
unità quadrata. Per area minima in triangolo
corrisponde il lato più grande
Poi
Il triangolo A ha un'area di 12 e due lati di lunghezza 3 e 8. Il triangolo B è simile al triangolo A e ha un lato di lunghezza 9. Quali sono le aree massime e minime possibili del triangolo B?
Area massima possibile del triangolo B = 108 Area minima possibile del triangolo B = 15.1875 Delta s A e B sono simili. Per ottenere l'area massima di Delta B, il lato 9 di Delta B dovrebbe corrispondere al lato 3 di Delta A. I lati sono nel rapporto 9: 3 Quindi le aree saranno nel rapporto di 9 ^ 2: 3 ^ 2 = 81: 9 Area massima del triangolo B = (12 * 81) / 9 = 108 Analogamente per ottenere l'area minima, il lato 8 del Delta A corrisponderà al lato 9 del Delta B. I lati sono nel rapporto 9: 8 e nelle aree 81: 64 Area minima di Delta B = (12 * 81) / 64 = 15.1875
Il triangolo A ha un'area di 12 e due lati di lunghezza 4 e 8. Il triangolo B è simile al triangolo A e ha un lato di lunghezza 7. Quali sono le aree massime e minime possibili del triangolo B?
A_ "Bmin" ~~ 4.8 A_ "Bmax" = 36.75 Per prima cosa devi trovare le lunghezze laterali per il triangolo di dimensione massima A, quando il lato più lungo è maggiore di 4 e 8 e il triangolo di dimensioni minime, quando 8 è il lato più lungo. Per fare ciò usa la formula Area di Heron: s = (a + b + c) / 2 dove a, b, & c sono le lunghezze laterali del triangolo: A = sqrt (s (sa) (sb) (sc)) Lasciate a = 8, b = 4 "&" c "sono lunghezze del lato sconosciuto" s = (12 + c) / 2 = 6 + 1 / 2c A_A = 12 = sqrt ((6 + 1 / 2c) (6 + 1 / 2c-4) (6 + 1 / 2c-8) (6 + 1 / 2c-c)
Il triangolo A ha un'area di 12 e due lati di lunghezza 5 e 7. Il triangolo B è simile al triangolo A e ha un lato con una lunghezza di 19. Quali sono le aree massime e minime possibili del triangolo B?
Area massima = 187.947 "" unità quadrate Area minima = 88.4082 "" unità quadrate I triangoli A e B sono simili. Per il metodo di proporzione e proporzione della soluzione, il triangolo B ha tre possibili triangoli. Per il triangolo A: i lati sono x = 7, y = 5, z = 4.800941906394, angolo Z = 43.29180759327 ^ @ L'angolo Z tra i lati x e y è stato ottenuto utilizzando la formula per l'area del triangolo Area = 1/2 * x * y * sin Z 12 = 1/2 * 7 * 5 * sin ZZ = 43.29180759327 ^ @ Tre triangoli possibili per il triangolo B: i lati sono Triangolo 1. x_1 = 19, y_1 = 95/7, z_1 = 13.031128031