Risposta:
Tra gli anni 5 e 6.
Spiegazione:
Popolazione dopo
Ci viene chiesto quando
Utilizzando una calcolatrice
La popolazione di una città cresce al ritmo del 5% ogni anno. La popolazione nel 1990 era di 400.000. Quale sarebbe la popolazione attuale prevista? In quale anno dovremmo prevedere che la popolazione raggiungerà 1.000.000?
11 ottobre 2008. Tasso di crescita per n anni è P (1 + 5/100) ^ n Il valore iniziale di P = 400 000, il 1 ° gennaio 1990. Quindi abbiamo 400000 (1 + 5/100) ^ n Quindi noi è necessario determinare n per 400000 (1 + 5/100) ^ n = 1000000 Dividi entrambi i lati di 400000 (1 + 5/100) ^ n = 5/2 Prendendo i registri n ln (105/100) = ln (5/2 ) n = ln 2.5 / ln 1.05 n = 18.780 anni di progressione a 3 decimali Quindi l'anno sarà 1990 + 18.780 = 2008.78 La popolazione raggiunge 1 milione entro l'11 ottobre 2008.
La popolazione di una città è stata stimata in 125.000 nel 1930 e in 500.000 nel 1998, se la popolazione continuasse a crescere allo stesso ritmo quando la popolazione raggiungerà 1 milione?
2032 La città ha quadruplicato la sua popolazione in 68 anni. Ciò significa che raddoppia la popolazione ogni 34 anni. Quindi 1998 + 34 = 2032
Una macchina si deprezza al ritmo del 20% all'anno. Quindi, alla fine dell'anno, l'auto vale l'80% del suo valore dall'inizio dell'anno. Quale percentuale del suo valore originale è l'auto che vale alla fine del terzo anno?
51,2% Modelliamo questo con una funzione esponenziale decrescente. f (x) = y volte (0.8) ^ x Dove y è il valore iniziale della vettura e x è il tempo trascorso in anni dall'anno di acquisto. Quindi dopo 3 anni abbiamo il seguente: f (3) = y volte (0.8) ^ 3 f (3) = 0.512y Quindi l'auto vale solo il 51.2% del suo valore originale dopo 3 anni.