Risposta:
Nel caso intendessi "testare la convergenza del serie:
la risposta è: it
Spiegazione:
Per scoprirlo, possiamo usare il test del rapporto.
Cioè, se
Quindi se lo dimostriamo
significa che la serie converge
Dall'altro se
significa che la serie diverge
Nel nostro caso
Quindi,
Proprio come:
Sottraiamo
Quindi abbiamo
Poi testiamo,
Quindi, è abbastanza sicuro concludere che la serie
Come si usa il test integrale per determinare la convergenza o la divergenza della serie: somma n e ^ -n da n = 1 a infinito?
Prendi l'integrale int_1 ^ ooxe ^ -xdx, che è finito, e nota che limita sum_ (n = 2) ^ oo n e ^ (- n). Quindi è convergente, quindi anche sum_ (n = 1) ^ oo n e ^ (- n). L'affermazione formale del test integrale afferma che se fin [0, oo) rightarrowRR è una funzione decrescente monotona che non è negativa. Quindi la somma sum_ (n = 0) ^ oof (n) è convergente se e solo se "sup" _ (N> 0) int_0 ^ Nf (x) dx è finito. (Tau, Terence, Analisi I, seconda edizione, Hindustan book agency, 2009). Questa affermazione può sembrare un po 'tecnica, ma l'idea è la seguent
Come si verifica la convergenza per somma (4 + add (cosk)) / (k ^ 3) per k = 1 all'infinito?
La serie converge assolutamente. Prima nota: (4 + abs (cosk)) / k ^ 3 <= 5 / k ^ 3 per k = 1 ... oo e (4 + abs (cosk)) / k ^ 3> 0 per k = 1 ... oo Quindi se sum5 / k ^ 3 converge sarà somma (4 + abs (cosk)) / k ^ 3 poiché sarà inferiore alla nuova espressione (e positiva). Questa è una serie p con p = 3> 1. Pertanto la serie converge assolutamente: vedi http://math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/SandS/SeriesTests/p-series.html per maggiori informazioni.
Come si trova una rappresentazione in serie di potenze per (arctan (x)) / (x) e qual è il raggio di convergenza?
Integrare la serie di potenze della derivata di arctan (x) quindi dividere per x. Conosciamo la rappresentazione della serie di potenze di 1 / (1-x) = sum_nx ^ n AAx tale che absx <1. So 1 / (1 + x ^ 2) = (arctan (x)) '= sum_n (-1) ^ nx ^ (2n). Quindi la serie di potenze di arctan (x) è intsum_n (-1) ^ nx ^ (2n) dx = sum_n int (-1) ^ nx ^ (2n) dx = sum_n ((- 1) ^ n) / (2n + 1) x ^ (2n + 1).Si divide per x, si scopre che la serie di potenze di arctan (x) / x è sum_n ((- 1) ^ n) / (2n + 1) x ^ (2n). Diciamo u_n = ((-1) ^ n) / (2n + 1) x ^ (2n) Per trovare il raggio di convergenza di questa serie di potenze,